Ukr.Biochem.J. 2018; Volume 90, Issue 5, Sep-Oct, pp. 5-18

doi: https://doi.org/10.15407/ubj90.05.005

Biochemical aspects of the combined use of taxanes, irradiation and other antineoplastic agents for the treatment of anaplastic thyroid carcinoma

V. M. Pushkarev, O. I. Kovzun, V. V. Pushkarev, B. B. Guda, M. D. Tronko

SI V. P. Komisarenko Institute of Endocrinology and Metabolism, NAMS of Ukraine, Kyiv;
e-mail: pushkarev.vm@gmail.com

The review summarizes the results of the cycle of own research and literature data on biochemical mechanisms of combined action of taxanes with γ-irradiation and other antineoplastic agents on one of the most aggressive types of human cancer – anaplastic thyroid carcinoma. Antagonistic interplay between taxanes and irradiation at the level of apoptotic mechanisms and regulators of the cell cycle are discussed. The effectiveness and prospects of using low concentrations of taxanes and low doses of fractional γ-irradiation are substantiated. Attention is paid to the role of inflammation and its key factor – NF-κB in the genesis of thyroid carcinomas and their treatment. Directions for further research are outlined.

Keywords: , , , , , ,


References:

  1. Tronko MD, Pushkarev VV, Kovzun OI, Pushkarev VM. Anaplastic carcinoma of the thyroid gland: new approaches for its treatment (review). Endokrynologia. 2013;18(2):78-91. (In Ukrainian).
  2. Penna GC, Vaisman F, Vaisman M, Sobrinho-Simões M, Soares P.  Molecular Markers Involved in Tumorigenesis of Thyroid Carcinoma: Focus on Aggressive Histotypes. Cytogenet Genome Res. 2016;150(3-4):194-207. PubMed, CrossRef
  3. Tiedje V, Stuschke M, Weber F, Dralle H, Moss L, Führer D. Anaplastic thyroid carcinoma: review of treatment protocols. Endocr Relat Cancer. 2018 Mar;25(3):R153-R161. PubMed, CrossRef
  4. Lin RY. Thyroid cancer stem cells. Nat Rev Endocrinol. 2011 Jul 26;7(10):609-16. PubMed, CrossRef
  5. Molinaro E, Romei C, Biagini A, Sabini E, Agate L, Mazzeo S, Materazzi G, Sellari-Franceschini S, Ribechini A, Torregrossa L, Basolo F, Vitti P, Elisei R. Anaplastic thyroid carcinoma: from clinicopathology to genetics and advanced therapies. Nat Rev Endocrinol. 2017 Nov;13(11):644-660. PubMed, CrossRef
  6. Tronko ND, Pushkarev VM. Thirty years after the Chernobyl accident: molecular genetic mechanisms of carcinogenesis of the thyroid gland. CytolGenet. 2016;50(6):366-371. CrossRef
  7. Cancer Genome Atlas Research Network.  Integrated genomic characterization of papillary thyroid carcinoma. Cell. 2014 Oct 23;159(3):676-90.  PubMed, PubMedCentral, CrossRef
  8. Xing M. Molecular pathogenesis and mechanisms of thyroid cancer. Nat Rev Cancer. 2013 Mar;13(3):184-99.  PubMed, PubMedCentral, CrossRef
  9. Charles RP, Silva J, Iezza G, Phillips WA, McMahon M. Activating BRAF and PIK3CA mutations cooperate to promote anaplastic thyroid carcinogenesis. Mol Cancer Res. 2014 Jul;12(7):979-86. PubMed, PubMedCentral, CrossRef
  10. Takano T. Fetal cell carcinogenesis of the thyroid: a modified theory based on recent evidence. Endocr J. 2014;61(4):311-20.  PubMed, CrossRef
  11. Guo Z, Hardin H, Lloyd RV. Cancer stem-like cells and thyroid cancer. Endocr Relat Cancer. 2014 Oct;21(5):T285-300. PubMed, CrossRef
  12. Hardin H, Zhang R, Helein H, Buehler D, Guo Z, Lloyd RV. The evolving concept of cancer stem-like cells in thyroid cancer and other solid tumors. Lab Invest. 2017 Oct;97(10):1142-1151. PubMed, CrossRef
  13. Takano T. Fetal cell carcinogenesis of the thyroid: theory and practice. Semin Cancer Biol. 2007 Jun;17(3):233-40. PubMed, CrossRef
  14. Kunstman JW, Juhlin CC, Goh G, Brown TC, Stenman A, Healy JM, Rubinstein JC, Choi M, Kiss N, Nelson-Williams C, Mane S, Rimm DL, Prasad ML, Höög A, Zedenius J, Larsson C, Korah R, Lifton RP, Carling T. Characterization of the mutational landscape of anaplastic thyroid cancer via whole-exome sequencing. Hum Mol Genet. 2015 Apr 15;24(8):2318-29. PubMed, PubMedCentral, CrossRef
  15. Nikiforov YE. Thyroid cancer in 2015: Molecular landscape of thyroid cancer continues to be deciphered. Nat Rev Endocrinol. 2016 Feb;12(2):67-8. PubMed, CrossRef
  16. Xu B, Ghossein R. Genomic Landscape of poorly Differentiated and Anaplastic Thyroid Carcinoma. Endocr Pathol. 2016 Sep;27(3):205-12.  PubMed, CrossRef
  17. Landa I, Ibrahimpasic T, Boucai L, Sinha R, Knauf JA, Shah RH, Dogan S, Ricarte-Filho JC, Krishnamoorthy GP, Xu B, Schultz N, Berger MF, Sander C, Taylor BS, Ghossein R, Ganly I, Fagin JA. Genomic and transcriptomic hallmarks of poorly differentiated and anaplastic thyroid cancers. J Clin Invest. 2016 Mar 1;126(3):1052-66.  PubMed, PubMedCentral, CrossRef
  18. Gild ML, Bullock M, Robinson BG, Clifton-Bligh R. Multikinase inhibitors: a new option for the treatment of thyroid cancer. Nat Rev Endocrinol. 2011 Aug 23;7(10):617-24. PubMed, CrossRef
  19. Pushkarev VM, Starenki DV, Saenko VA, Namba H, Kurebayashi J, Tronko MD, Yamashita S. Molecular mechanisms of the effects of low concentrations of taxol in anaplastic thyroid cancer cells. Endocrinology. 2004 Jul;145(7):3143-52. PubMed, CrossRef
  20. Ojima I, Lichtenthal B, Lee S, Wang C, Wang X. Taxane anticancer agents: a patent perspective. Expert Opin Ther Pat. 2016;26(1):1-20. PubMed, PubMedCentral, CrossRef
  21. Pushkarev VM, Starenki DV, Saenko VA, Yamashita S, Kovzun OI, Popadiuk ID, Pushkarev VV, Tronko MD. Effects of low and high concentrations of antitumour drug taxol in anaplastic thyroid cancer cells. Exp Oncol. 2009 Mar;31(1):16-21. PubMed
  22. Pushkarev VV, Starenki DV, Pushkarev VM, Kovzun OI, Tronko MD. Inhibitor of the transcription factor NF-κB, DHMEQ, enhances the effect of paclitaxel on cells of anaplastic thyroid carcinoma in vitro and in vivo. Ukr Biochem J. 2015 May-Jun;87(3):63-74. PubMed, CrossRef
  23. Mitra A, Sept D. Taxol allosterically alters the dynamics of the tubulin dimer and increases the flexibility of microtubules. Biophys J. 2008 Oct;95(7):3252-8. PubMed, PubMedCentral, CrossRef
  24. Pushkarev VM, Starenki DV, Saenko VA, Pushkarev VV, Kovzun OI, Tronko MD, Popadiuk ID, Yamashita S. Differential effects of low and high doses of Taxol in anaplastic thyroid cancer cells: possible implication of the Pin1 prolyl isomerase. Exp Oncol. 2008 Sep;30(3):190-4. PubMed
  25. Pushkarev VV, Kovzun OI, Pushkarev VM, Tronko MD. The effect of the combined action of roscovitine and Paclitaxel on the apoptotic and cell cycle regulatory mechanisms in colon and anaplastic thyroid cancer cells. ISRN Biochem. 2012 Aug 30;2012:826305.
    PubMed, PubMedCentral, CrossRef
  26. Spring PM, Arnold SM, Shajahan S, Brown B, Dey S, Lele SM, Valentino J, Jones R, Mohiuddin M, Ahmed MM. Low dose fractionated radiation potentiates the effects of taxotere in nude mice xenografts of squamous cell carcinoma of head and neck. Cell Cycle. 2004 Apr;3(4):479-85. PubMed, CrossRef
  27. Toiyama Y, Inoue Y, Hiro J, Ojima E, Watanabe H, Narita Y, Hosono A, Miki C, Kusunoki M. The range of optimal concentration and mechanisms of paclitaxel in radio-enhancement in gastrointestinal cancer cell lines. Cancer Chemother Pharmacol. 2007 May;59(6):733-42. PubMed, CrossRef
  28. Pushkarev VM, Starenki DV, Saenko VO, Tronko MD, Yamashita S. Effects of Paclitaxel and combination of the drug with radiation therapy in an in vivo model of anaplastic thyroid carcinoma. Exp Oncol. 2011 Mar;33(1):24-7. PubMed
  29. Pushkarev VM, Kovzun OI, Pushkarev VV, Tronko MD. Biochemical effects of combined action of gamma-irradiation and paclitaxel on anaplastic thyroid cancer cells. Ukr Biokhim Zhurn. 2013 Jan-Feb;85(1):51-61.  PubMed, CrossRef
  30. Choy H. Chemoradiation in cancer therapy. Springer Science & Business Media, 2002. 420 p.
  31. Peña-Blanco A, García-Sáez AJ. Bax, Bak and beyond – mitochondrial performance in apoptosis. FEBS J. 2018 Feb;285(3):416-431. PubMed, CrossRef
  32. Zuckerman V, Lenos K, Popowicz GM, Silberman I, Grossman T, Marine JC, Holak TA, Jochemsen AG, Haupt Y. c-Abl phosphorylates Hdmx and regulates its interaction with p53. J Biol Chem. 2009 Feb 6;284(6):4031-9.  PubMed, CrossRef
  33. Waning DL, Lehman JA, Batuello CN, Mayo LD. c-Abl phosphorylation of Mdm2 facilitates Mdm2-Mdmx complex formation. J Biol Chem. 2011 Jan 7;286(1):216-22. PubMed, PubMedCentral, CrossRef
  34. Nehmé A, Lee BL, Baskaran R, Zhang Q, Lin X, Christen RD. Effect of c-Abl tyrosine kinase on the cellular response to paclitaxel-induced microtubule damage. Br J Cancer. 2000 Nov;83(10):1360-6. PubMed, PubMedCentral
  35. Stracker TH, Usui T, Petrini JH. Taking the time to make important decisions: the checkpoint effector kinases Chk1 and Chk2 and the DNA damage response. DNA Repair (Amst). 2009 Sep 2;8(9):1047-54. PubMed, PubMedCentral, CrossRef
  36. Wong JV, Dong P, Nevins JR, Mathey-Prevot B, You L. Network calisthenics: control of E2F dynamics in cell cycle entry. Cell Cycle. 2011 Sep 15;10(18):3086-94. PubMed, PubMedCentral
  37. Wang X, Zeng L, Wang J, Chau JF, Lai KP, Jia D, Poonepalli A, Hande MP, Liu H, He G, He L, Li B. A positive role for c-Abl in Atm and Atr activation in DNA damage response. Cell Death Differ. 2011 Jan;18(1):5-15. PubMed, PubMedCentral, CrossRef
  38. Sui M, Dziadyk JM, Zhu X, Fan W. Cell cycle-dependent antagonistic interactions between paclitaxel and gamma-radiation in combination therapy. Clin Cancer Res. 2004 Jul 15;10(14):4848-57. PubMed
  39. Sui M, Xiong X, Kraft AS, Fan W. Combination of gemcitabine antagonizes antitumor activity of paclitaxel through prevention of mitotic arrest and apoptosis. Cancer Biol Ther. 2006 Aug;5(8):1015-21.  PubMed
  40. Xiong X, Sui M, Fan W, Kraft AS. Cell cycle dependent antagonistic interactions between paclitaxel and carboplatin in combination therapy. Cancer Biol Ther. 2007 Jul;6(7):1067-73. PubMed, CrossRef
  41. Strom E, Sathe S, Komarov PG, Chernova OB, Pavlovska I, Shyshynova I, Bosykh DA, Burdelya LG, Macklis RM, Skaliter R, Komarova EA, Gudkov AV. Small-molecule inhibitor of p53 binding to mitochondria protects mice from gamma radiation. Nat Chem Biol. 2006 Sep;2(9):474-9.  PubMed
  42. Chipuk JE, Moldoveanu T, Llambi F, Parsons MJ, Green DR. The BCL-2 family reunion. Mol Cell. 2010 Feb 12;37(3):299-310.
    PubMed, PubMedCentral, cr id=”http://dx.doi.org/10.1016/j.molcel.2010.01.025″]
  43. Su J, Zhou L, Xia MH, Xu Y, Xiang XY, Sun LK. Bcl-2 family proteins are involved in the signal crosstalk between endoplasmic reticulum stress and mitochondrial dysfunction in tumor chemotherapy resistance. Biomed Res Int. 2014;2014:234370.  PubMed, PubMed, CrossRef
  44. Geng F, Tang L, Li Y, Yang L, Choi KS, Kazim AL, Zhang Y. Allyl isothiocyanate arrests cancer cells in mitosis, and mitotic arrest in turn leads to apoptosis via Bcl-2 protein phosphorylation. J Biol Chem. 2011 Sep 16;286(37):32259-67.  PubMed, PubMedCentral, CrossRef
  45. Bergstralh DT, Ting JP. Microtubule stabilizing agents: their molecular signaling consequences and the potential for enhancement by drug combination. Cancer Treat Rev. 2006 May;32(3):166-79.  PubMed, CrossRef
  46. Malumbres M. Cyclin-dependent kinases. Genome Biol. 2014;15(6):122. Review. PubMed, PubMedCentral
  47. Cicenas J, Kalyan K, Sorokinas A, Stankunas E, Levy J, Meskinyte I, Stankevicius V, Kaupinis A, Valius M. Roscovitine in cancer and other diseases. Ann Transl Med. 2015 Jun;3(10):135. PubMed, PubMedCentral, CrossRef
  48. Ortiz-Ferrón G, Yerbes R, Eramo A, López-Pérez AI, De Maria R, López-Rivas A. Roscovitine sensitizes breast cancer cells to TRAIL-induced apoptosis through a pleiotropic mechanism. Cell Res. 2008 Jun;18(6):664-76.  PubMed, CrossRef
  49. Cui C, Wang Y, Wang Y, Zhao M, Peng S. Exploring the relationship between the inhibition selectivity and the apoptosis of roscovitine-treated cancer cells. J Anal Methods Chem. 2013;2013:389390.  PubMed, PubMedCentral, CrossRef
  50. Bai J, Li Y, Zhang G. Cell cycle regulation and anticancer drug discovery. Cancer Biol Med. 2017 Nov;14(4):348-362. PubMed, PubMed, CrossRef
  51. Pushkarev VM, Kovzun OI, Pushkarev VV, Huda BB, Tronko ND. Chronic inflammation and cancer. Role of nuclear factor NF-κB. Zhurn  Nat Acad  Med Nauk Ukraine. 2015;21(3-4):287-298. (In Ukrainian).
  52. Karin M. NF-kappaB as a critical link between inflammation and cancer. Cold Spring Harb Perspect Biol. 2009 Nov;1(5):a000141. PubMedPubMedCentral, CrossRef
  53. Blaylock RL. Cancer microenvironment, inflammation and cancer stem cells: A hypothesis for a paradigm change and new targets in cancer control. Surg Neurol Int. 2015 May 29;6:92. PubMed, PubMedCentral, CrossRef
  54. Riedlinger T, Haas J, Busch J, van de Sluis B, Kracht M, Schmitz ML. The direct and indirect roles of NF-κB in cancer: lessons from oncogenic fusion proteins and knock-in mice. Biomedicines. 2018 Mar 19;6(1). pii: E36. PubMedPubMedCentral,  CrossRef
  55. Hayden MS, Ghosh S. NF-κB, the first quarter-century: remarkable progress and outstanding questions. Genes Dev. 2012 Feb 1;26(3):203-34. PubMed, PubMedCentral, CrossRef
  56. Bauerle KT, Schweppe RE, Lund G, Kotnis G, Deep G, Agarwal R, Pozdeyev N, Wood WM, Haugen BR. Nuclear factor κB-dependent regulation of angiogenesis, and metastasis in an in vivo model of thyroid cancer is associated with secreted interleukin-8. J Clin Endocrinol Metab. 2014 Aug;99(8):E1436-44. PubMed, PubMedCentral, CrossRef
  57. Ben-Neriah Y, Karin M. Inflammation meets cancer, with NF-κB as the matchmaker. Nat Immunol. 2011 Jul 19;12(8):715-23. PubMed, CrossRef
  58. Nagel D, Vincendeau M, Eitelhuber AC, Krappmann D. Mechanisms and consequences of constitutive NF-κB activation in B-cell lymphoid malignancies. Oncogene. 2014 Dec 11;33(50):5655-65. PubMed, CrossRef
  59. Muzza M, Degl’Innocenti D, Colombo C, Perrino M, Ravasi E, Rossi S, Cirello V, Beck-Peccoz P, Borrello MG, Fugazzola L. The tight relationship between papillary thyroid cancer, autoimmunity and inflammation: clinical and molecular studies. Clin Endocrinol (Oxf). 2010 May;72(5):702-8. PubMed, CrossRef
  60. Guarino V, Castellone MD, Avilla E, Melillo RM. Thyroid cancer and inflammation. Mol Cell Endocrinol. 2010 May 28;321(1):94-102. PubMed, CrossRef
  61. Li X, Abdel-Mageed AB, Mondal D, Kandil E. The nuclear factor kappa-B signaling pathway as a therapeutic target against thyroid cancers. Thyroid. 2013 Feb;23(2):209-18.  PubMed, CrossRef
  62. Altieri DC. Survivin and IAP proteins in cell-death mechanisms. Biochem J. 2010 Sep 1;430(2):199-205. PubMed, PubMedCentral, CrossRef
  63. Winsauer G, Resch U, Hofer-Warbinek R, Schichl YM, de Martin R. XIAP regulates bi-phasic NF-kappaB induction involving physical interaction and ubiquitination of MEKK2. Cell Signal. 2008 Nov;20(11):2107-12. PubMed, CrossRef
  64. Gyrd-Hansen M, Meier P. IAPs: from caspase inhibitors to modulators of NF-kappaB, inflammation and cancer. Nat Rev Cancer. 2010 Aug;10(8):561-74. PubMed, CrossRef
  65. Li F, Sethi G. Targeting transcription factor NF-kappaB to overcome chemoresistance and radioresistance in cancer therapy. Biochim Biophys Acta. 2010 Apr;1805(2):167-80. PubMed, CrossRef
  66. Starenki D, Namba H, Saenko V, Ohtsuru A, Yamashita S. Inhibition of nuclear factor-kappaB cascade potentiates the effect of a combination treatment of anaplastic thyroid cancer cells. J Clin Endocrinol Metab. 2004 Jan;89(1):410-8. PubMed
  67. Shinoda K, Kuboki S, Shimizu H, Ohtsuka M, Kato A, Yoshitomi H, Furukawa K, Miyazaki M. Pin1 facilitates NF-κB activation and promotes tumour progression in human hepatocellular carcinoma. Br J Cancer. 2015 Nov 3;113(9):1323-31. PubMed, PubMedCentral, CrossRef
  68. Zhu CX, Li WZ, Guo YL, Chen L, Li GH, Yu JJ, Shu B, Peng S. Tumor suppressor RKIP inhibits prostate cancer cell metastasis and sensitizes prostate cancer cells to docetaxel treatment. Neoplasma. 2018;65(2):228-233. PubMed, CrossRef
  69. Witta SE, Gustafson DL, Pierson AS, Menter A, Holden SN, Basche M, Persky M, O’Bryant CL, Zeng C, Baron A, Long ME, Gibbs A, Kelly K, Bunn PA Jr, Chan DC, Pallansch P, Eckhardt SG. A phase I and pharmacokinetic study of exisulind and docetaxel in patients with advanced solid tumors. Clin Cancer Res. 2004 Nov 1;10(21):7229-37. PubMed, CrossRef
  70. Luchnik AN. A common link in the mechanism of the self-maintenance of malignant growth: the syndrome of the nonhealing wound. Ontogenez. 2000 May-Jun;31(3):227-31. (In Russian). PubMed, CrossRef
  71. Ribatti D, Tamma R. A revisited concept. Tumors: Wounds that do not heal. Crit Rev Oncol Hematol. 2018 Aug;128:65-69. PubMed, CrossRef
  72. Dvorak HF. Tumors: wounds that do not heal-redux. Cancer Immunol Res. 2015 Jan;3(1):1-11. PubMed, PubMedCentral, CrossRef
  73. Piñeiro D, Martín ME, Guerra N, Salinas M, González VM. Calpain inhibition stimulates caspase-dependent apoptosis induced by taxol in NIH3T3 cells. Exp Cell Res. 2007 Jan 15;313(2):369-79. PubMedCrossRef
  74. Maiti R. Metronomic chemotherapy. J Pharmacol Pharmacother. 2014 Jul;5(3):186-92. PubMed, PubMedCentral, CrossRef
  75. Kerbel RS, Shaked Y. The potential clinical promise of ‘multimodality’ metronomic chemotherapy revealed by preclinical studies of metastatic disease. Cancer Lett. 2017 Aug 1;400:293-304. PubMed, CrossRef
  76. Gupta S, Koru-Sengul T, Arnold SM, Devi GR, Mohiuddin M, Ahmed MM. Low-dose fractionated radiation potentiates the effects of cisplatin independent of the hyper-radiation sensitivity in human lung cancer cells. Mol Cancer Ther. 2011 Feb;10(2):292-302. PubMedCrossRef
  77. Pushkarev VM, Sokolova LK, Pushkarev VV, Tronko MD. Biochemical mechanisms connecting diabetes and cancer. Effects of methormine. Endokrynologia. 2018;23(2):167-179. (In Russian).

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.