Ukr.Biochem.J. 2018; Volume 90, Issue 5, Sep-Oct, pp. 34-42

doi: https://doi.org/10.15407/ubj90.05.034

Calix[4]arene С-956 selectively inhibits plasma membrane Са(2+),Mg(2+)-АТРase in myometrial cells

Т. O. Veklich1, O. A. Skrabak1, Yu. V. Nikonishyna1, R. V. Rodik2, V. I. Kalchenko2, S. O. Kosterin1

1Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv;
2Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Kyiv;
e-mail: veklich@biochem.kiev.ua; manli@ioch.kiev.ua

Using enzymatic assays and kinetic analysis, we demonstrated that 100 µM calix[4]arene C-956 (5,11,17,23-tetra(trifluoro)methyl-(phenylsulfonylimino) methylamino-25,27-dioctyloxy-26,28-dipropoxycalix[4]arene) had the most significant inhibitory effect on the plasma membrane Са2+,Mg2+-АТРase activity compared to effects of other calix[4]arenes, and had no effect on specific activities of other membrane ATPases. Using confocal microscopy and fluorescent probe fluo-4, we observed an increase of the intracellular level of Ca2+ after application of calix[4]arene C-956 to immobilized myocytes. Analysis of the effect of calix[4]arene C-956 on the hydrodynamic diameter of myocytes demonstrated that application of calix[4]arene C-956 solution decreased this parameter by 45.5 ± 9.4% compared to control value similarly to the action of uterotonic drug oxytocin.

Keywords: , , , , ,


References:

  1. Webb RC. Smooth muscle contraction and relaxation. Adv Physiol Educ. 2003 Dec;27(1-4):201-6. PubMed
  2. Wray S. Insights into the uterus. Exp Physiol. 2007 Jul;92(4):621-31. PubMed, CrossRef
  3. Wray S, Kupittayanant S, Shmygol A, Smith RD, Burdyga T. The physiological basis of uterine contractility: a short review. Exp Physiol. 2001 Mar;86(2):239-46. PubMed, CrossRef
  4. Kosterin SO, Babich LG, Shlykov SG, Danylovych IuV, Veklich ТО, Mazur YuYu. Biochemical properties and regulation of smooth muscle cell Са2+-transporting systems. K.: Science opinion, 2016. 210 р.
  5. Laporte R, Hui A, Laher I. Pharmacological modulation of sarcoplasmic reticulum function in smooth muscle. Pharmacol Rev. 2004 Dec;56(4):439-513.
    PubMed, CrossRef
  6. Moccia F, Berra-Romani R, Tanzi F. Update on vascular endothelial Ca(2+) signalling: A tale of ion channels, pumps and transporters. World J Biol Chem. 2012 Jul 26;3(7):127-58.  PubMed, PubMed, CrossRef
  7. Noble D, Herchuelz A. Role of Na/Ca exchange and the plasma membrane Ca2+-ATPase in cell function. Conference on Na/Ca exchange. EMBO Rep. 2007 Mar;8(3):228-32. PubMed, PubMedCentral, CrossRef
  8. Inesi G, Toyoshima C. Catalytic and transport Mechanism of the Sarco‐(Endo)Plasmic Reticulum Ca2+‐ATPase (SERCA). Eds.  Futai M., Wada Y, Kaplan JH. Handbook of ATPases: Biochemistry, Cell Biology, Pathophysiology. Wiley-VCH, 2004: 63-87. CrossRef
  9. Karaki H, Ozaki H, Hori M, Mitsui-Saito M, Amano K, Harada K, Miyamoto S, Nakazawa H, Won KJ, Sato K. Calcium movements, distribution, and functions in smooth muscle. Pharmacol Rev. 1997 Jun;49(2):157-230. PubMed
  10. Shmigol A, Eisner DA, Wray S. Carboxyeosin decreases the rate of decay of the [Ca2+]i transient in uterine smooth muscle cells isolated from pregnant rats. Pflugers Arch. 1998 Dec;437(1):158-60. PubMed, CrossRef
  11. Veklich TO, Mazur IuIu, Kosterin SO. Mg2+,ATP-depenent plasma membrane calcium pump of smooth muscle cells. ІІ. Regulation of acrivity. Ukr Biochem J. 2015 Mar-Apr;87(2):5-25. (In Ukrainian). PubMed, CrossRef
  12. Brini M. Plasma-Membrane Calcium Pump: Structure and Function. Elsevier Inc. 2013; 3: 525-529. CrossRef
  13. Uterine contractility. Ed. by R.E. Garfield. Serano Simposia, VSA, Norwill, Massachuses, 1990. 388 p.
  14. Hertelendy F, Zakar T. Regulation of myometrial smooth muscle functions. Curr Pharm Des. 2004;10(20):2499-517. PubMed, CrossRef
  15. Di Leva F, Domi T, Fedrizzi L, Lim D, Carafoli E. The plasma membrane Ca2+ ATPase of animal cells: structure, function and regulation. Arch Biochem Biophys. 2008 Aug 1;476(1):65-74. PubMed, CrossRef
  16. Pestov NB, Dmitriev RI, Shakhparonov MI. Regulation of Сa2+-АТPase of plasma membranes. Adv Biol Chem. 2003; 45: 235-268.
  17. Monteith GR, Wanigasekara Y, Roufogalis BD. The plasma membrane calcium pump, its role and regulation: new complexities and possibilities. J Pharmacol Toxicol Methods. 1998 Nov;40(4):183-90.  PubMed, CrossRef
  18. Pande J, Mallhi KK, Grover AK. A novel plasma membrane Ca(2+)-pump inhibitor: caloxin 1A1. Eur J Pharmacol. 2005 Jan 31;508(1-3):1-6. PubMed, CrossRef
  19. Veklich TA, Shkrabak AA, Slinchenko NN, Mazur II, Rodik RV, Boyko VI, Kalchenko VI, Kosterin SA. Calix[4]arene C-90 selectively inhibits Ca2+,Mg2+-ATPase of myometrium cell plasma membrane. Biochemistry (Mosc). 2014 May;79(5):417-24. PubMed, CrossRef
  20. Mazur IuI, Veklich TO, Shkrabak OA, Mohart NA, Demchenko AM, Gerashchenko IV, Rodik RV, Kalchenko VI, Kosterin SO. Selective inhibition of smooth muscle plasma membrane transport Са2+,Mg2+-АТРase by calix[4]arene C-90 and its activation by IFT-35 compound. Gen Physiol Biophys. 2018; 37(02): 223-231. CrossRef
  21. Rodik R, Boiko V, Danylyuk O, Suwinska K, Tsymbal I, Slinchenko N, Babich L, Shlykov S, Kosterin S, Lipkowski J, Kalchenko V. Calix[4]arenesulfonylamidines. Synthesis, structure and influence on Mg2+,ATP-dependent calcium pumps. Tetrahedron Lett. 2005;46(43):7459-7462. CrossRef
  22. Аtamas LI, Boyko VI, Drapaylo AB, Yesypenko AA, Kalchenko ОІ, Klyachina МА, Маtveev YuІ, Мiroshnichenko SI, Rodik RV, Chrenok SA, Kalchenko VI. Supramolecular chemistry of calixarenes. J Org Pharmac Chem. 2009;7(2(26)): 28-36. (In Ukrainian).
  23. Agrawal YK, Bhatt H. Calixarenes and their biomimetic applications. Bioinorg Chem Appl. 2004:237-74. PubMed, PubMedCentral, CrossRef
  24. Rodik RV, Boyko VI, Kalchenko VI. Calixarenes in Biotechnology and Bio-Medical Researches. Front Med Chem. 2016; 8: 206-301. CrossRef
  25. Nimse SB, Kim T. Biological applications of functionalized calixarenes. Chem Soc Rev. 2013 Jan 7;42(1):366-86. PubMed, CrossRef
  26. Coleman AW, Jebors S, Cecillon S, Perret P, Garin D, Marti-Battle D, Moulin M. Toxicity and biodistribution of para-sulfonato-calix[4]arene in mice. New J Chem. 2008; 32(5): 780-782. CrossRef
  27. Veklich TO, Kosterin SO. Comparative study of properties of Na+,K+-ATPase and Mg2+-ATPase of the myometrium plasma membrane. Ukr Biokhim Zhurn. 2005 Mar-Apr;77(2):66-75. (In Ukrainian). PubMed
  28. Kondratyuk TP, Bychenok SF, Prishchepa LA, Babich LG, Kursky MD, Osipinko AA. Isolation and characteristics of the fraction of plasma membranes in pig myometrium. Ukr Biokhim Zhurn. 1986 Jul-Aug;58(4):50-6. (In Russian). PubMed
  29. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248-54. PubMed, CrossRef
  30. Flynn ER, Bradley KN, Muir TC, McCarron JG. Functionally separate intracellular Ca2+ stores in smooth muscle. J Biol Chem. 2001 Sep 28;276(39):36411-8.  PubMed
  31. Valente RC, Capella LS, Monteiro RQ, Rumjanek VM, Lopes AG, Capella MA. Mechanisms of ouabain toxicity. FASEB J. 2003 Sep;17(12):1700-2. PubMed
  32. Wang H, Haas M, Liang M, Cai T, Tian J, Li S, Xie Z. Ouabain assembles signaling cascades through the caveolar Na+/K+-ATPase. J Biol Chem. 2004 Apr 23;279(17):17250-9. PubMed, CrossRef
  33. Veklich TO, Kosterin SO, Shynlova OP. Cationic specificity of a Ca2+-accumulating system in smooth muscle cell mitochondria. Ukr Biokhim Zhurn. 2002 Jan-Feb;74(1):42-8. (In Ukrainian). PubMed
  34. Rathbun WB, Betlach MV. Estimation of enzymically produced orthophosphate in the presence of cysteine and adenosine triphosphate. Anal Biochem. 1969 Apr 4;28(1):436-46. PubMed, CrossRef
  35. Mikhailova MV, Gontareva NB, Nesterov VP. The significance of adaptive modifications in the evolution. J Evol Biochem Physiol. 1992; 28(4): 447-453.
  36. Magocsi M, Penniston JT. Ca2+ or Mg2+ nucleotide phosphohydrolases in myometrium: two ecto-enzymes. Biochim Biophys Acta. 1991 Nov 18;1070(1):163-72. PubMed
  37. Mollard P, Mironneau J, Amedee T, Mironneau C. Electrophysiological characterization of single pregnant rat myometrial cells in short-term primary culture. Am J Physiol. 1986 Jan;250(1 Pt 1):C47-54. PubMed, CrossRef
  38. Amédée T, Mironneau C, Mironneau J. Isolation and contractile responses of single pregnant rat myometrial cells in short-term primary culture and the effects of pharmacological and electrical stimuli. Br J Pharmacol. 1986 Aug;88(4):873-80. PubMed, PubMedCentral, CrossRef
  39.  Danylovych GV, Kоlomiets ОV, Danylovych YuV, Rodik RV, Kаlchenko VI, Kоsterin SО. Cаlіx[4]аrene С-956 is effective inhibitor of Н+-Сa2+-exchanger in smooth muscle mitochondria. Ukr Biochem J. 2018; 90(1): 25-33.  CrossRef
  40. Danylovych IuV, Chunikhin OIu, Danylovych HV. Investigation of the changes in uterine myocytes size depending on contractile activity modulators by photon correlation spectroscopy. Fiziol Zh. 2013;59(1):32-9. (In Ukrainian). PubMed

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.