Ukr.Biochem.J. 2019; Volume 91, Issue 3, May-Jun, pp. 34-45


Adaptive respiratory response of rat pancreatic acinar cells to mitochondrial membrane depolarization

B. O. Manko, O. O. Bilonoha, V. V. Manko

Ivan Franko National University of Lviv, Ukraine;

Received: 06 December 2018; Accepted: 14 March 2019

The dependence of uncoupled respiratory capacity of intact pancreatic acini on oxidative substrate supply and functional cell state has not yet been studied in detail. In this study, the respiratory responses of isolated pancreatic acini to FCCP were measured with Clark electrode and mitochondrial membrane potential was assessed with rhodamine123 fluorescence. The response of acini to FCCP was characteri­zed with maximal uncoupled respiration rate, optimal FCCP concentration, respiration acceleration and decele­ration. Maximal uncoupled respiration rate substantially increased upon the oxidation of glucose + glutamine (3.03 ± 0.54 r.u.), glucose + glutamine + pyruvate (2.82 ± 0.51 r.u.), glucose + isocitrate (2.71 ± 0.33 r.u.), glucose + malate (2.75 ± 0.38 r.u.), glucose + monomethyl-succinate (2.64 ± 0.42 r.u.) or glucose + dimethyl-α-ketoglutarate (2.36 ± 0.33 r.u.) comparing to glucose alone (1.73–2.02 r.u.) or no substrate (1.76 ± 0.33 r.u.). The optimal FCCP concentration was the highest (1.75 μM) upon glucose + glutamine + pyruvate combination and the lowest (0.5 μM) upon glutamate, combinations of glucose with isocitrate, malate, succinate or α-ketoglutarate. Respiration acceleration after FCCP application was the highest with dimethyl-α-ketoglutarate. Following the peak respiration, time-dependent deceleration was observed. It increased with FCCP concentration and depended on oxidative substrate type. Deceleration was the highest upon malate or isocitrate oxidation but was not observed in case of glutamine or dimethyl-α-ketoglutarate oxidation. Pyruvate alone or in combination with glutamine and glucose significantly decreased the depolarizing effect of FCCP on mitochondrial membrane potential and increased respiration elasticity coefficient with respect to the membrane potential change. Thus, in pancreatic acinar cells, the combination of pyruvate, glutamine and glucose enables the optimal adaptive respiratory response to membrane depolarization.

Keywords: , , , , ,


  1. Kosowski H, Schild L, Kunz D, Halangk W. Energy metabolism in rat pancreatic acinar cells during anoxia and reoxygenation. Biochim Biophys Acta. 1998 Oct 5;1367(1-3):118-26. PubMed, CrossRef
  2. Schulz HU, Pross M, Meyer F, Matthias R, Halangk W. Acinar cell respiration in experimental acute pancreatitis. Shock. 1995 Mar;3(3):184-8. PubMed, CrossRef
  3. Shalbueva N, Mareninova OA, Gerloff A, Yuan J, Waldron RT, Pandol SJ, Gukovskaya AS. Effects of oxidative alcohol metabolism on the mitochondrial permeability transition pore and necrosis in a mouse model of alcoholic pancreatitis. Gastroenterology. 2013 Feb;144(2):437-446.e6.  PubMed, PubMedCentral, CrossRef
  4. Huang W, Booth DM, Cane MC, Chvanov M, Javed MA, Elliott VL, Armstrong JA, Dingsdale H, Cash N, Li Y, Greenhalf W, Mukherjee R, Kaphalia BS, Jaffar M, Petersen OH, Tepikin AV, Sutton R, Criddle DN. Fatty acid ethyl ester synthase inhibition ameliorates ethanol-induced Ca2+-dependent mitochondrial dysfunction and acute pancreatitis. Gut. 2014 Aug;63(8):1313-24.  PubMed, PubMedCentral, CrossRef
  5. Voronina SG, Barrow SL, Gerasimenko OV, Petersen OH, Tepikin AV. Effects of secretagogues and bile acids on mitochondrial membrane potential of pancreatic acinar cells: comparison of different modes of evaluating DeltaPsim. J Biol Chem. 2004 Jun 25;279(26):27327-38. PubMed, CrossRef
  6. Mukherjee R, Mareninova OA, Odinokova IV, Huang W, Murphy J, Chvanov M, Javed MA, Wen L, Booth DM, Cane MC, Awais M, Gavillet B, Pruss RM, Schaller S, Molkentin JD, Tepikin AV, Petersen OH, Pandol SJ, Gukovsky I, Criddle DN, Gukovskaya AS, Sutton R. Mechanism of mitochondrial permeability transition pore induction and damage in the pancreas: inhibition prevents acute pancreatitis by protecting production of ATP. Gut. 2016 Aug;65(8):1333-46. PubMed, PubMedCentral, CrossRef
  7. Mankad P, James A, Siriwardena AK, Elliott AC, Bruce JI. Insulin protects pancreatic acinar cells from cytosolic calcium overload and inhibition of plasma membrane calcium pump. J Biol Chem. 2012 Jan 13;287(3):1823-36. PubMed, PubMedCentral, CrossRef
  8. Schild L, Matthias R, Stanarius A, Wolf G, Augustin W, Halangk W. Induction of permeability transition in pancreatic mitochondria by cerulein in rats. Mol Cell Biochem. 1999 May;195(1-2):191-7. PubMed, CrossRef
  9. Voronina SG, Barrow SL, Simpson AW, Gerasimenko OV, da Silva Xavier G, Rutter GA, Petersen OH, Tepikin AV. Dynamic changes in cytosolic and mitochondrial ATP levels in pancreatic acinar cells. Gastroenterology. 2010 May;138(5):1976-87. PubMed, PubMedCentral, CrossRef
  10. Manko BO, Manko VV. Mechanisms of respiration intensification of rat pancreatic acini upon carbachol-induced Ca(2+) release. Acta Physiol (Oxf). 2013 Aug;208(4):387-99. PubMed, CrossRef
  11. Odinokova IV, Sung KF, Mareninova OA, Hermann K, Evtodienko Y, Andreyev A, Gukovsky I, Gukovskaya AS. Mechanisms regulating cytochrome c release in pancreatic mitochondria. Gut. 2009 Mar;58(3):431-42. PubMed, PubMedCentral, CrossRef
  12. Choi SW, Gerencser AA, Nicholls DG. Bioenergetic analysis of isolated cerebrocortical nerve terminals on a microgram scale: spare respiratory capacity and stochastic mitochondrial failure. J Neurochem. 2009 May;109(4):1179-91. PubMed, PubMedCentral, CrossRef
  13. Dranka BP, Benavides GA, Diers AR, Giordano S, Zelickson BR, Reily C, Zou L, Chatham JC, Hill BG, Zhang J, Landar A, Darley-Usmar VM. Assessing bioenergetic function in response to oxidative stress by metabolic profiling. Free Radic Biol Med. 2011 Nov 1;51(9):1621-35. PubMed, PubMedCentral, CrossRef
  14. Doliba NM, Qin W, Vatamaniuk MZ, Buettger CW, Collins HW, Magnuson MA, Kaestner KH, Wilson DF, Carr RD, Matschinsky FM. Cholinergic regulation of fuel-induced hormone secretion and respiration of SUR1-/- mouse islets. Am J Physiol Endocrinol Metab. 2006 Sep;291(3):E525-35. PubMed, CrossRef
  15. Brand MD, Nicholls DG. Assessing mitochondrial dysfunction in cells. Biochem J. 2011 Apr 15;435(2):297-312.  PubMed, PubMedCentral, CrossRef
  16. Manko BO, Klevets MY, Manko VV. An implication of novel methodology to study pancreatic acinar mitochondria under in situ conditions. Cell Biochem Funct. 2013 Mar;31(2):115-21. PubMed, CrossRef
  17. Olson MS, Allgyer TT. The inhibition of L(–)-palmitylcarnitine oxidation by -ketoglutarate in rat liver mitochondria. Biochim Biophys Acta. 1972 May 25;267(2):238-48. PubMed, CrossRef
  18. Kondrashova MN1, Doliba NM. Polarographic observation of substrate-level phosphorylation and its stimulation by acetylcholine. FEBS Lett. 1989 Jan 30;243(2):153-5. PubMed, CrossRef
  19. Gordan R, Fefelova N, Gwathmey JK, Xie LH. Involvement of mitochondrial permeability transition pore (mPTP) in cardiac arrhythmias: Evidence from cyclophilin D knockout mice. Cell Calcium. 2016 Dec;60(6):363-372. PubMed, PubMedCentral, CrossRef
  20. Fukushima D, Doi H, Fukushima K, Katsura K, Ogawa N, Sekiguchi S, Fujimori K, Sato A, Satomi S, Ishida K, Fukushima K. Glutamate exocrine dynamics augmented by plasma glutamine and the distribution of amino acid transporters of the rat pancreas. J Physiol Pharmacol. 2010 Jun;61(3):265-71. PubMed
  21. Rooman I, Lutz C, Pinho AV, Huggel K, Reding T, Lahoutte T, Verrey F, Graf R, Camargo SM. Amino acid transporters expression in acinar cells is changed during acute pancreatitis. Pancreatology. 2013 Sep-Oct;13(5):475-85. PubMed, CrossRef
  22. Jin Q, Bethke CM. Kinetics of electron transfer through the respiratory chain. Biophys J. 2002 Oct;83(4):1797-808. PubMed, PubMedCentral, CrossRef
  23. Brand MD, Hafner RP, Brown GC.  Control of respiration in non-phosphorylating mitochondria is shared between the proton leak and the respiratory chain. Biochem J. 1988 Oct 15;255(2):535-9. PubMed, PubMedCentral
  24. Zhong X, Liang CP, Gong S. Intravenous glutamine for severe acute pancreatitis: A meta-analysis. World J Crit Care Med. 2013 Feb 4;2(1):4-8.  PubMed, PubMedCentral, CrossRef
  25. Huang W, Xiong JJ, Cheng CR, Szatmary P, Chvanov M, Criddle DN, Xia Q, Sutton R. Therapeutic potential of pyruvate in acute pancreatitis: In Vitro findings and a systematic review. Pancreatology. 2016;16(1):S32.  CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.