Ukr.Biochem.J. 2021; Volume 93, Issue 4, Jul-Aug, pp. 93-102

doi: doi:

Biochemical and tensometric analysis of C(60) fullerenes protective effect on the development of skeletal muscle fatigue

D. M. Nozdrenko1, K. I. Bogutska1, I. V. Pampuha1,
O. O. Gonchar2, O. M. Abramchuk3, Yu. I. Prylutskyy1*

1Taras Shevchenko National University of Kyiv, Ukraine;
2Bogomolets Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv;
3Lesya Ukrainka Volyn National University, Lutsk, Ukraine

Received: 19 May 2021; Accepted: 07 July 2021

TThe protective effect of water-soluble C60 fullerenes on the development of slow and rapid fatigue of rat skeletal muscles was analyzed. It was found that the reduction of muscle contraction force (muscle soleus) by 50% of the initial values is almost twice as slow as stimulation with a frequency of 1 Hz (slow muscle fatigue) than with 2 Hz (rapid muscle fatigue) stimulation after intramuscular injection of C60  fullerenes (dose 0.5 mg/kg). There is a clear tendency to decrease the values of biochemical parameters of the blood of animals with the therapeutic effect of water-soluble C60 fullerenes by approximately 45-60% and 35-40% with the development of slow and rapid muscle fatigue, respectively. Thus, C60 fullerenes, as powerful antioxidants, are able to efficiently affect the prooxidant-antioxidant homeostasis of muscle tissue and thus help maintain its normal physiological state.

Keywords: , , ,


  1. Kostyukov AI, Day S, Hellström F, Radovanovic S, Ljubisavljevic M, Windhorst U, Johansson H. Fatigue-related changes in electomyogram activity of the cat gastrocnemius during frequency-modulated efferent stimulation. Neuroscience. 2000;97(4):801-809. PubMed, CrossRef
  2. Edwards RH, Hill DK, Jones DA. Metabolic changes associated with the slowing of relaxation in fatigued mouse muscle. J Physiol. 1975;251(2):287-301. PubMed, PubMedCentral, CrossRef
  3. Nozdrenko DN, Bogutska KI. About molecular mechanisms of fiber muscle contraction at transition to new equilibrium state: analysis of experimental data using three-componential electrical stimulating signal.  Biopolym Cell. 2005;21(3):283-286. CrossRef
  4. Nozdrenko DN, Shut AN, Prylutskyy YuI. The possible molecular mechanism of the nonlinearity muscle contraction and its experimental substantiation. Biopolym Cell. 2005;21(1):80-83. CrossRef
  5. Woods JJ, Furbush F, Bigland-Ritchie B. Evidence for a fatigue-induced reflex inhibition of motoneuron firing rates. J Neurophysiol. 1987;58(1):125-137. PubMed, CrossRef
  6. Vasilaki A, Mansouri A, Van Remmen H, van der Meulen JH, Larkin L, Richardson AG, McArdle A, Faulkner JA, Jackson MJ. Free radical generation by skeletal muscle of adult and old mice: effect of contractile activity. Aging Cell. 2006;5(2):109-117. PubMed, CrossRef
  7. Davies KJ, Quintanilha AT, Brooks GA, Packer L. Free radicals and tissue damage produced by exercise. Biochem Biophys Res Commun. 1982;107(4):1198-1205. PubMed, CrossRef
  8. Jackson MJ, Edwards RH, Symons MC. Electron spin resonance studies of intact mammalian skeletal muscle. Biochim Biophys Acta. 1985;847(2):185-190. PubMed, CrossRef
  9. Duthie GG, Robertson JD, Maughan RJ, Morrice PC. Blood antioxidant status and erythrocyte lipid peroxidation following distance running. Arch Biochem Biophys. 1990;282(1):78-83. PubMed, CrossRef
  10. Barreiro E, Gea J, Di Falco M, Kriazhev L, James S, Hussain SN. Protein carbonyl formation in the diaphragm. Am J Respir Cell Mol Biol. 2005;32(1):9-17.  PubMed, CrossRef
  11. Sen CK, Marin E, Kretzschmar M, Hänninen O. Skeletal muscle and liver glutathione homeostasis in response to training, exercise, and immobilization. J Appl Physiol. 1992;73(4):1265-1272. PubMed, CrossRef
  12. Ferreira CA, Ni D, Rosenkrans ZT, Cai W. Scavenging of reactive oxygen and nitrogen species with nanomaterials. Nano Res. 2018;11(10):4955-4984. PubMed, PubMedCentral, CrossRef
  13. Gonchar OO, Maznychenko AV, Bulgakova NV, Vereshchaka IV, Tomiak T, Ritter U, Prylutskyy YuI, Mankovska IM, Kostyukov AI. C60 Fullerene Prevents Restraint Stress-Induced Oxidative Disorders in Rat Tissues: Possible Involvement of the Nrf2/ARE-Antioxidant Pathway.  Oxid Med Cell Longev. 2018;2018:2518676. PubMed, PubMedCentral, CrossRef
  14. Halenova T, Raksha N, Savchuk O, Ostapchenko L, Prylutskyy Y, Ritter U, Scharff P. Evaluation of the biocompatibility of water-soluble pristine C60 fullerenes in rabbit. BioNanoSci. 2020;10(3):721-730.  CrossRef
  15. Zay SYu, Zavodovskyi DA, Bogutska KI, Nozdrenko DN, Prylutskyy YuI. Prospects of C60 fullerene application as mean of prevention and correction of ischemic-reperfusion injury in the skeletal muscle tissue. Fiziol Zhurn. 2016;62(3):66-77. PubMed, CrossRef
  16. Nozdrenko DN, Matvienko TYu, Vygovska OV, Soroca VM, Bogutska KI, Nuryshchenko NE, Prylutskyy YuI, Zholos АV.
    Activation of the cold and menthol receptor TRPM8 improves post-traumatic recovery of rat muscle soleus during fullerene treatment. Nanosistemi, Nanomateriali, Nanotehnologii. 2020; 18(1): 205-216.  CrossRef
  17. Goodarzi S, Da Ros T, Conde J, Sefat F, Mozafari M. Fullerene: biomedical engineers get to revisit an old friend. Mater Today. 2017;20(8);460-480. CrossRef
  18. 18. Kuznietsova HM, Dziubenko NV, Lynchak OV, Herheliuk TS, Zavalny DK, Remeniak OV, Prylutskyy YuI, Ritter U. Effects of Pristine C 60 Fullerenes on Liver and Pancreas in α-Naphthylisothiocyanate-Induced Cholangitis. Dig Dis Sci. 2020;65(1):215-224.
    PubMed, PubMedCentral, CrossRef
  19. Didenko G, Prylutska S, Kichmarenko Y, Potebnya G, Prylutskyy Y, Slobodyanik N, Ritter U, Scharff P. Evaluation of the antitumor immune response to C60 fullerene. Mat-wiss u Werkstofftech. 2013; 44(2-3): 124-128. CrossRef
  20. Vereshchaka IV, Bulgakova NV, Maznychenko AV, Gonchar OO, Prylutskyy YuI, Ritter U, Moska W, Tomiak T, Nozdrenko DM, Mishchenko IV, Kostyukov AI. C60 Fullerenes Diminish Muscle Fatigue in Rats Comparable to N-acetylcysteine or β-Alanine. Front Physiol. 2018;9:517. PubMed, PubMedCentral, CrossRef
  21. Mori T, Takada H, Ito S, Matsubayashi K, Miwa N, Sawaguchi T. Preclinical studies on safety of fullerene upon acute oral administration and evaluation for no mutagenesis. Toxicology. 2006;225(1):48-54. PubMed, CrossRef
  22. Wang IC, Tai LA, Lee DD, Kanakamma PP, Shen CK, Luh TY, Cheng CH, Hwang KC. C(60) and water-soluble fullerene derivatives as antioxidants against radical-initiated lipid peroxidation. J Med Chem. 1999;42(22):4614-4620. PubMed, CrossRef
  23. Prylutskyy YuI, Yashchuk VM, Kushnir KM, Golub AA, Kudrenko VA, Prylutska SV, Grynyuk II, Buzaneva EV, Scharff P, Braun T, Matyshevska OP. Biophysical studies of fullerene-based composite for bio-nanotechnology. Mater Sci Engineer C. 2003; 23(1-2): 109-111. CrossRef
  24. Prilutski YuI, Durov SS, Yashchuk VN, Ogul’chansky TYu, Pogorelov VE, Astashkin YuA, Buzaneva EV, Kirghizov YuD, Andrievsky GV, Scharff P.
    Theoretical predictions and experimental studies of self-organization C60 nanoparticles in water solution and on the support. Europ Phys J D. 1999; 9(1-4): 341-343. CrossRef
  25. Nozdrenko DM, Zavodovskyi DO, Matvienko TYu, Zay SYu, Bogutska KI, Prylutskyy YuI, Ritter U, Scharff P. C60 Fullerene as Promising Therapeutic Agent for the Prevention and Correction of Skeletal Muscle Functioning at Ischemic Injury. Nanoscale Res Lett. 2017;12(1):115. PubMed, PubMedCentral, CrossRef
  26. Gharbi N, Pressac M, Hadchouel M, Szwarc H, Wilson SR, Moussa F. [60]fullerene is a powerful antioxidant in vivo with no acute or subacute toxicity. Nano Lett. 2005;5(12):2578-2585. PubMed, CrossRef
  27. Prylutska SV, Grebinyk AG, Lynchak OV, Byelinska IV, Cherepanov VV, Tauscher E, Matyshevska OP, Prylutskyy YuI, Rybalchenko VK, Ritter U, Frohme M. In vitro and in vivo toxicity of pristine C60 fullerene aqueous colloid solution. Fullerenes, Nanotubes, Carbon Nanostruct. 2019; 27(9): 715-728.  CrossRef
  28. Brancaccio P, Lippi G, Maffulli N. Biochemical markers of muscular damage. Clin Chem Lab Med. 2010;48(6):757-767. PubMed, CrossRef
  29. Tolkachov M, Sokolova V, Loza K, Korolovych V, Prylutskyy Yu, Epple M, Ritter U, Scharff P. Study of biocompatibility effect of nanocarbon particles on various cell types in vitro. Mat-wiss u Werkstofftech. 2016; 47(2-3): 216-221. CrossRef
  30. Kraemer AB, Parfitt GM, Acosta DDS, Bruch GE, Cordeiro MF, Marins LF, Ventura-Lima J, Monserrat JM, Barros DM. Fullerene (C60) particle size implications in neurotoxicity following infusion into the hippocampi of Wistar rats. Toxicol Appl Pharmacol. 2018;338:197-203. PubMed, CrossRef
  31. Prylutskyy YuI, Vereshchaka IV, Maznychenko AV, Bulgakova NV, Gonchar OO, Kyzyma OA, Ritter U, Scharff P, Tomiak T, Nozdrenko DM, Mishchenko IV, Kostyukov AI. C(60) fullerene as promising therapeutic agent for correcting and preventing skeletal muscle fatigue. J Nanobiotechnology. 2017;15(1):8. PubMed, PubMedCentral, CrossRef
  32. Sahlin K, Ren JM. Relationship of contraction capacity to metabolic changes during recovery from a fatiguing contraction. J Appl Physiol. 1989;67(2):648-654. PubMed, CrossRef
  33. Wiseman RW, Beck TW, Chase PB. Effect of intracellular pH on force development depends on temperature in intact skeletal muscle from mouse. Am J Physiol. 1996;271(3):C878-C886. PubMed, CrossRef
  34. Westerblad H, Bruton JD, Lännergren J. The effect of intracellular pH on contractile function of intact, single fibres of mouse muscle declines with increasing temperature. J Physiol. 1997;500(Pt 1):193-204. PubMed, PubMedCentral, CrossRef
  35. Lamb GD, Recupero E, Stephenson DG. Effect of myoplasmic pH on excitation-contraction coupling in skeletal muscle fibres of the toad. J Physiol. 1992;448:211-224. PubMed, PubMedCentral, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.