Ukr.Biochem.J. 2023; Volume 95, Issue 1, Jan-Feb, pp. 73-84

doi: https://doi.org/10.15407/ubj95.01.073

Indices of antioxidant and osmoprotective systems in seedlings of winter wheat cultivars with different frost resistance

T. O. Yastreb1, Yu. E. Kolupaev1,2*, A. I. Kokorev1, B. E. Маkaova2,
N. I. Ryabchun1, O. A. Zmiievska1, G. D. Pospielova2

1Yuriev Plant Production Institute, National Academy of Agrarian Sciences of Ukraine, Kharkiv;
2Poltava State Agrarian University, Ukraine;
*e-mail: plant_biology@ukr.net

Received: 02 January 2023; Revised: 27 January 2023;
Accepted: 13 April 2023; Available on-line:  27 April 2023

The functioning of the stress-protective systems of wheat under the action of cold at the early stages of plant development remains poorly studied. The aim of this work was a comparative study of antioxidant activity and the content of sugars and proline as indicators of osmoprotective activity during cold adaptation of seedlings of seven winter bread wheat (Triticum aestivum L.) cultivars that differ significantly in frost resistance. The 3-day-old etiolated seedlings were hardened at 2°C for 6 days and then frozen for 5 h at -6 or -9°C. Two days after freezing, the survival of seedlings was assessed by their ability to grow. A decrease in ROS content, an increase in the activity of antioxidant enzymes catalase and guaiacol peroxidase and accumulation of sugars in the shoots of high-frost-resistant cultivars during hardening were detected. The absolute values of catalase and guaiacol peroxidase activity correlated positively with the frost resistance of seedlings. The negative correlation between the frost tolerance of the cultivars and the accumulation of proline in the seedlings during hardening was recorded. The possibility of using the studied biochemical indices for frost resistance screening of winter wheat varieties at the seedling stage was stated.

Keywords: , , , , ,


References:

  1. Rousi E, Kornhuber K, Beobide-Arsuaga G, Luo F, Coumou D. Accelerated western European heatwave trends linked to more-persistent double jets over Eurasia. Nat Commun. 2022;13(1):3851. PubMed, PubMedCentral, CrossRef
  2. Sadras VO, Monzon JP. Modelled wheat phenology captures rising temperature trends: shortened time to flowering and maturity in Australia and Argentina. Field Crops Res. 2006;99(2-3):136-146. CrossRef
  3. Morgun VV, Major PS. Winter and frost resistance of winter cereals. In: Morgun VV, editor. Plant physiology: problems and prospects for development, vol. 2. Kyiv: Logos; 2009. p. 105-165. (In Ukrainian).
  4. Guo X, Liu D, Chong K. Cold signaling in plants: Insights into mechanisms and regulation. J Integr Plant Biol. 2018;60(9):745-756. PubMed, CrossRef
  5. Byun MY, Lee J, Cui LH, Kang Y, Oh TK, Park H, Lee H, Kim WT. Constitutive expression of DaCBF7, an Antarctic vascular plant Deschampsia antarctica CBF homolog, resulted in improved cold tolerance in transgenic rice plants. Plant Sci. 2015;236:61-74. PubMed, CrossRef
  6. Sharma P, Sharma MMM, Patra A, Vashisthd M, Mehtac S, Singhe B, Tiwarie, M, Pandey V. The role of key transcription factors for cold tolerance in plants. In: Wani SH, editors. Transcription factors for abiotic stress tolerance in plants, Elsevier Inc; 2020. p. 123-152. CrossRef
  7. Theocharis A, Clement C, Barka EA. Physiological and molecular changes in plants grown at low temperatures. Planta. 2012;235(6):1091-1105. PubMed, CrossRef
  8. Trischuk RG, Schilling BS, Wisniewski M, Gusta LV. Freezing stress: systems biology to study cold tolerance. In: Madhava Rao K, Raghavendra A, Janardhan Reddy K. (Eds.) Physiology and Molecular Biology of Stress Tolerance in Plants. Springer, Dordrecht, 2006. p. 131-155. CrossRef
  9. Kazemi-Shahandashti SS, Maali-Amiri R. Global insights of protein responses to cold stress in plants: Signaling, defence, and degradation. J Plant Physiol. 2018;226:123-135. PubMed, CrossRef
  10. Janda T, Szalai G, Leskó K, Yordanova R, Apostol S, Popova LP. Factors contributing to enhanced freezing tolerance in wheat during frost hardening in the light. Phytochemistry. 2007;68(12):1674-1682. PubMed, CrossRef
  11. Awasthi R, Bhandari K, Nayyar H. Temperature stress and redox homeostasis in agricultural crops. Front Environ Sci. 2015;3:11. CrossRef
  12. Liu W, Yu K, He T, Li F, Zhang D, Liu J. The low temperature induced physiological responses of Avena nuda L., a cold-tolerant plant species. Sci World J. 2013;2013:658793. PubMed, PubMedCentral, CrossRef
  13. Ignatenko A, Talanova V, Repkina N, Titov A. Exogenous salicylic acid treatment induces cold tolerance in wheat through promotion of antioxidant enzyme activity and proline accumulation. Acta Physiol Plant. 2019;41(6):80. CrossRef
  14. Ma L, Coulter JA, Liu L, Zhao Y, Chang Y, Pu Y, Zeng X, Xu Y, Wu J, Fang Y, Bai J, Sun W. Transcriptome Analysis Reveals Key Cold-Stress-Responsive Genes in Winter Rapeseed (Brassica rapa L.). Int J Mol Sci. 2019;20(5):1071. PubMed, PubMedCentral, CrossRef
  15. Janda T, Szalai G, Rios-Gonzalez K, Veisz O, Páldi E. Comparative study of frost tolerance and antioxidant activity in cereals. Plant Sci. 2003;164(2):301-306. CrossRef
  16. Janmohammadi M, Enayati V, Sabaghnia N. Impact of cold acclimation, de-acclimation and re-acclimation on carbohydrate content and antioxidant enzyme activities in spring and winter wheat. Icel Agric Sci. 2012;25:3-11.
  17. Luo Y, Tang H, Zhang Y. Production of reactive oxygen species and antioxidant metabolism about strawberry leaves to low temperatures. J Agricult Sci. 2011;3(2):89-96. CrossRef
  18. Kaur R, Nayyar H. Ascorbic acid: a potent defender against environmental stresses. In: Ahmad P, editor. Oxidative Damage to Plants. Antioxidant Networks and Signaling. Academic Press is an imprint of Elsevier; 2014. p. 235-287. CrossRef
  19. Kocsy G, Simon-Sarkadi L, Kovács Z, Boldizsár Á, Sovány C, Kirsch K, Galiba G. Regulation of free amino acid and polyamine levels during cold acclimation in wheat. Acta Biol Szegediensis. 2011;55(1):91-93.
  20. Sum AK, Faller R, de Pablo JJ. Molecular simulation study of phospholipid bilayers and insights of the interactions with disaccharides. Biophys J. 2003;85(5):2830-2844. PubMed, PubMedCentral, CrossRef
  21. Ende WV, Peshev D. Sugars as Antioxidants in Plants. In: Tuteja N, Gill S. (eds). Crop Improvement Under Adverse Conditions. Springer, New York, NY, 2013, p. 285–307. CrossRef
  22. Gangola MP, Ramadoss BR. Sugars play a critical role in abiotic stress tolerance in plants. In: Wani SH, editor. Biochemical, Physiological and Molecular Avenues for Combating Abiotic Stress in Plants. Amsterdam: Elsevier; 2018. p. 17-38. CrossRef
  23. Kolupaev YuE, Horielova EI, Yastreb TO, Ryabchun NI. State of antioxidant system in triticale seedlings at cold hardening of varieties of different frost resistance. Cereal Res Commun. 2020;48(2):165-171. CrossRef
  24. Aghaee A, Moradi F, Zare-Maivan H, Zarinkamar F, Pour Irandoost H, Sharifi P. Physiological responses of two rice (Oryza sativa L.) genotypes to chilling stress at seedling stage. Afr J Biotechnol. 2011;10(39):7617-21.
  25. Zhang X, Wang K, Ervin EH, Waltz C, Murphy T. Metabolic changes during cold acclimation and deacclimation in five bermudagrass varieties. I. Proline, total amino acid, protein, and dehydrin expression. Crop Sci. 2011;51(2):838-846. CrossRef
  26. Burbulis N, Jonytiene V, Kupriene R, Blinstrubiene A. Changes in proline and soluble sugars content during cold acclimation of winter rapeseed shoots in vitro. J Food Agricult Environ. 2011;9(2): 371-374.
  27. Yoshida M, Kawakami A. Molecular analysis of fructan metabolism associated with freezing tolerance and snow mold resistance of winter wheat. In: Imai R, Yoshida M, Matsumoto N. (Eds.). Plant and microbe adaptations to cold in a changing world. New York: Springer; 2013. p. 231-243. CrossRef
  28. Kolupaev YuE, Horielova EI, Yastreb TO, Popov YuV, Ryabchun NI. Phenylalanine ammonia-lyase activity and content of flavonoid compounds in wheat seedlings at the action of hypothermia and hydrogen sulfide donor. Ukr Biochem J. 2018;90(6):12-20. CrossRef
  29. Kolupaev YuYe, Yastreb TO, Shvidenko NV, Karpets YuV. Influence of salicylic and succinic acids on formation of active oxygen forms in wheat coleoptiles. Ukr Biokhim Zhurn. 2011;83(5):82-88. (In Ukrainian). PubMed
  30. Sagisaka S. The Occurrence of Peroxide in a Perennial Plant, Populus gelrica. Plant Physiol. 1976;57(2):308-309. PubMed, PubMedCentral, CrossRef
  31. Aebi H. Catalase in vitro. Methods Enzymol. 1984;105:121-126. PubMed, CrossRef
  32. Ridge I, Osborne DJ. Hydroxyproline and peroxidases in cell walls of Pisum sativum: Regulation by ethylene. J Exp Bot. 1970;21(4):843-856. CrossRef
  33. Zhao K, Fan H, Zhou S, Song J. Study on the salt and drought tolerance of Suaeda salsa and Kalanchoe claigremontiana under iso-osmotic salt and water stress. Plant Sci. 2003;165(4):837-844. CrossRef
  34. Bates LS, Walden RP, Tear GD. Rapid determination of free proline for water-stress studies. Plant Soil. 1973;39(1): 205-207. CrossRef
  35. Kolupaev YuE, Karpets YuV. Reactive oxygen species and stress signaling in plants. Ukr Biochem J. 2014;86(4):18-35. (In Russian). PubMed, CrossRef
  36. Kolupaev YuE, Karpets YuV, Yastreb TO, Shemet SA, Bhardwaj R. Antioxidant system and plant cross-adaptation against metal excess and other environmental stressors. In: Landi M, Shemet SA, Fedenko VS, eds. Metal toxicity in higher plants. New York: Nova Science Publishers, p. 21-66.
  37. Hasanuzzaman M, Bhuyan MHM, Zulfiqar F, Raza A, Mohsin SM, Mahmud JA, Fujita M, Fotopoulos V. Reactive oxygen species and antioxidant defense in plants under abiotic stress: Revisiting the crucial role of a universal defense regulator. Antioxidants. 2020;9(8):681. PubMed, PubMedCentral, CrossRef
  38. Anderson MD, Prasad TK, Stewart CR. Changes in isozyme profiles of catalase, peroxidase, and glutathione reductase during acclimation to chilling in mesocotyls of maize seedlings. Plant Physiol. 1995;109(4):1247-1257. PubMed, PubMedCentral, CrossRef
  39. Diachenko LF, Totsky VN, Fait VI, Toptikov VA. Some gene-enzyme systems expression of different wheat lines with vrd1 and vrd2 genes seedlings in adaptation to low temperature. Odesa National University Herald. Biology. 2007;12 (5):103-111. (In Russian).
  40. Rosa M, Prado C, Podazza G, Interdonato R, González JA, Hilal M, Prado FE. Soluble sugars metabolism, sensing and abiotic stress: a complex network in the life of plants. Plant Signal Behav. 2009;4(5):388-393. PubMed, PubMedCentral, CrossRef
  41. Liang X, Zhang L, Natarajan SK, Becker DF. Proline mechanisms of stress survival. Antioxid Redox Signal. 2013;19(9):998-1011. PubMed, PubMedCentral, CrossRef
  42. Zhang C, Fei SZ, Arora R, Hannapel DJ. Ice recrystallization inhibition proteins of perennial ryegrass enhance freezing tolerance. Planta. 2010;232(1):155-164. PubMed, CrossRef
  43. Tantau H, Balko C, Brettschneider B, Melz G, Dörffling K. Improved frost tolerance and winter survival in winter barley (Hordeum vulgare L.) by in vitro selection of proline overaccumulating lines. Euphytica. 2004;139(1):19-32. CrossRef
  44. Apostolova P, Yordanova R, Popova L. Response of antioxidative defence system to low temperature stress in two wheat cultivars. Gen Appl Plant Physiol. 2008;34(3-4):281-294.
  45. Wanner LA, Junttila O. Cold-induced freezing tolerance in Arabidopsis. Plant Physiol. 1999;120(2):391-400. PubMed, PubMedCentral, CrossRef
  46. Romanenko KO, Babenko LM, Smirnov OE, Kosakivska IV. Antioxidant protection system and photosynthetic pigment composition in secale cereale subjected to short-term temperature stresses. Open Agricult J. 2022;16(1):e187433152206273. CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.