Ukr.Biochem.J. 2024; Volume 96, Issue 1, Jan-Feb, pp. 22-36


Kinetic regularities of thiacalix[4]arene C-1087 inhibitory effect on the activity of Mg(2+)-dependent Ca(2+)-transporting ATP hydrolase in the plasma membrane of smooth muscle cells

Т. О. Veklich1, О. V. Bevza1, О. V. Maliuk1*, S. О. Kosterin1,
R. V. Rodik2, S. H. Vyshnevskyi2, V. І. Kalchenko2

1Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv;
2Institute of Organic Chemistry, National Academy of Sciences of Ukraine

Received: 05 November 2023; Revised: 04 January 2024;
Accepted: 01 February 2024; Available on-line: 26 February 2024

The experiments with the suspension of plasma membranes of myometrium cells, treated with 0.1% digitonin solution, were used to study kinetic regularities of the inhibitory effect of tetra-N-phenylsulfonyl trifluoroacetamidine-thiacalixarene (С-1087) on the activity of Са2+,Mg2+-ATPase. The studies demonstrated the impact of C-1087 on the cumulative effect and the maximal velocity of ATP hydrolysis. No effect of С-1087 on the affinity between Са2+,Mg2+-ATPase, and АТР, affinity and cumulative effect of Ca ions and activation coefficient for Mg ions was revealed. A considerable decrease in the maximal velocity of ATP hydrolysis evidenced a complete non-competitive mechanism of inhibiting Са2+,Mg2+-АТРase activity with thiacalix[4]arene С-1087. Computer simulation demonstrated that thiacalix[4]arene С-1087 inhibiting effect on Са2+,Mg2+-ATPase may be conditioned by the cumulative effect of four spatially oriented N-sulfonylamidine groups on the upper rim of its macrocyclic platform.

Keywords: , , , , , ,


  1. Veklich TO, Mazur IuI, Kosterin SO. Mg(2+), ATP-dependent plasma membrane calcium pump of smooth muscle cells. ІІ. Regulation of activity. Ukr Biochem J. 2015;87(2):5-25. (In Ukrainian). PubMed, CrossRef
  2. Kosterin SO, Babich LG, Shlykov SG, Danylovych IuV, Veklich ТО, Mazur YuYu. Biochemical properties and regulation of smooth muscle cell Са2+-transporting systems. K.: Science opinion, 2016. 210 р.
  3. Vats YuO, Klevets MYu, Fedirko NV. Kinetic characteristics of Ca2+, Mg2+-ATPases in cells of the submandibular salivary gland of rats. Ukr Biokhim Zhurn. 2004;76(6):44-54. (In Ukrainian). PubMed
  4. Kosterin SO. Kinetics and energetics of Mg2+,ATP-dependent Ca2+ transport in the plasma membrane of smooth muscle cells. Neurophysiology. 2003;35(3/4):187-200. CrossRef
  5. Rodik RV, Boyko VI, Kalchenko VI. Calixarenes in Biotechnology and Bio-Medical Researches. Front Med Chem. 2016;8:206-301. CrossRef
  6. Kosterin SO, Kalchenko VI, Veklich ТО, Babich LG, Shlykov SG. Calixarenes as modulators of ATP-hydrolyzing systems of smooth muscles. K.: Science opinion, 2019. 256 р.
  7. Nimse SB, Kim T. Biological applications of functionalized calixarenes. Chem Soc Rev. 2013;42(1):366-386. PubMed, CrossRef
  8. Coleman AW, Jebors S, Cecillon S, Perret P, Garin D, Marti-Battle D, Moulin M. Toxicity and biodistribution of para-sulfonato-calix[4]arene in mice. New J Chem. 2008;32(5):780-782. CrossRef
  9. Tsymbaluk O, Veklich T, Rodik R, Karakhim S, Vyshnevskyi S, Kalchenko V, Kosterin S. Thapsigargin-resistant thiacalix[4]arene C-1087-sensitive component of the contractile activity in rat myometrium reflects the functioning of plasma membrane calcium pum. Studia Biologica. 2023;17(3):3-22. CrossRef
  10. Veklich TO, Shkrabakv , MazurYuYu, Rodik RV, Boyko VI, Kalchenko VI, Kosterin SO. Kinetic properties of calixarene C-90 action on the myometrial plasma membrane Ca2+,Mg2+-Atpase activity and on the Ca2+ concentration in unexcited cells of the myometrium. Ukr Biokhim Zhurn. 2013;85(4):20-29. (In Ukrainian). PubMed, CrossRef
  11. Hu X, Zhu Z, Shen T, Shi X, Ren J, Sun Q. Synthesis of the tetranitro derivative of thiacalix[4]arene and its acid–base properties. Can J Chem. 2004; 82(8): 1266-1270. CrossRef
  12. Rassukana YV, Onys’ko PP, Grechukha AG, Sinitsa AD. N-(Arylsulfonyl)trihaloacetimidoyl Chlorides and Their Reactions with Phosphites. Eur J Org Chem. 2003;21:4181-4186. CrossRef
  13. Veklich ТО, Kosterin SO. Comparative study of properties of Na+,K+-ATPase and Mg2+-ATPase of the myometrium plasma membrane. Ukr Biokhim Zhurn. 2005;77(2):66-75. (In Ukrainian). PubMed
  14. Kondratuk ТP, Buchenuk SF, Prichepa АА, Babich LH, Kurskiy MD, Osipenko AA. Allocation and characterization of membrane fraction plasma membrane myometrium. Ukr Biokhim Zhurn. 1986;58(4):50-56. (In Ukrainian).
  15. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72(1-2):248-254. CrossRef
  16. Rathbun WB, Betlach MV. Estimation of enzymically produced orthophosphate in the presence of cysteine and adenosine triphosphate. Anal Biochem. 1969;28(1):436-445. PubMed, CrossRef
  17. Veklich TO, Labyntseva RD, Shkrabak OA, Tsymbalyuk OV, Rodik RV, Kalchenko VI, Kosterin SO. Inhibition of Na+,K+-ATPase and activation of myosin ATPase by calix[4]arene C-107 cause stimulation of isolated smooth muscle contractile activity. Ukr Biochem J. 2020;92(1):21-30. CrossRef
  18. Magocsi M, Penniston JT. Ca2+ or Mg2+ nucleotide phosphohydrolases in myometrium: two ecto-enzymes. Biochim Biophys Acta. 1991;1070(1):163-172. PubMed,cr id=”″]
  19. Storn R, Price K. Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim. 1997;11:341-359.
  20. Li L, Jose J, Xiang Y, Kuhn RJ, Rossmann MG. Structural changes of envelope proteins during alphavirus fusion. Nature. 2010;468(7324):705-708. PubMed, PubMedCentral, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.