Ukr.Biochem.J. 2024; Volume 96, Issue 4, Jul-Aug, pp. 33-43

doi: https://doi.org/10.15407/ubj96.04.033

Sex differences in respiration and redox homeostasis of heart mitochondria in rats on high-fructose diet

O. Ivanova1, N. Gorbenko1, O. Borikov2, T. Kiprych1, K. Taran1

1SI “V. Danilevsky Institute for Endocrine Pathology Problems
of the NAMS of Ukraine”, Kharkiv, Ukraine;
2V. N. Karazin Kharkiv National University, Kharkiv, Ukraine;
*e-mail: ivolga3006@ukr.net

Received: 05 April 2024; Revised: 27 May 2024;
Accepted: 25 July 2024; Available on-line: 04 September 2024

Sex hormones play a leading role in the sexual dimorphism of mitochondrial dysfunction and oxidative stress that are associated with Metabolic Syndrome (MetS) and considered as possible causes of cardiovascular disease. The aim of the work was to determine mitochondrial respiration and redox homeostasis in the heart mitochondria of high-fructose diet-fed (НFD) rats depending on sex. MetS was induced in Wistar rats by 8 weeks intake of fructose (200 g/l) with drinking water. The experiment was performed on 30 rats divided into five groups: control males, control females, HFD-fed males, HFD- fed females with intact ovaries, ovariectomized HFD-fed females. Heart mitochondria were isolated and indicators of redox homeostasis as well as mitochondrial oxygen consumption rate were determined. Heart mitochondria of intact female rats were characterized by a lower intensity of lipid peroxidation, a higher activity of antioxidant defense system and state 3 respiration in comparison with control males. HFD was shown to induce more expressed oxidative stress due to significant inhibition of enzymatic and non-enzymatic components of antioxidant defese and more pronounced dysregulation of mitochondrial respiration in the heart mitochondria of ovariectomized females as compared to males. This data may partially explain the greater cardiovascular risk in women with low estrogen sufficiency and justify the necessity of new sex-specific prevention and treatment of cardiovascular risk approaches.

Keywords: , , , , ,


References:

  1. Alberti G, Zimmet P, Shaw J, Grundy SM. The IDF consensus worldwide definition of the metabolic syndrome. IDF. 2006; 24 p. Available at https://idf.org/media/uploads/2023/05/attachments-30.pdf.
  2. Guembe MJ, Fernandez-Lazaro CI, Sayon-Orea C, Toledo E, Moreno-Iribas C, RIVANA Study Investigators. Risk for cardiovascular disease associated with metabolic syndrome and its components: a 13-year prospective study in the RIVANA cohort. Cardiovasc Diabetol. 2020;19(1):195. PubMed, PubMedCentral, CrossRef
  3. Pucci G, Alcidi R, Tap L, Battista F, Mattace-Raso F, Schillaci G. Sex- and gender-related prevalence, cardiovascular risk and therapeutic approach in metabolic syndrome: A review of the literature. Pharmacol Res. 2017;120:34-42. PubMed, CrossRef
  4. Barrett-Connor EL, Cohn BA, Wingard DL, Edelstein SL. Why is diabetes mellitus a stronger risk factor for fatal ischemic heart disease in women than in men? The Rancho Bernardo Study. JAMA. 1991;265(5):627-631. CrossRef
  5. Sergi G, Dianin M, Bertocco A, Zanforlini BM, Curreri C, Mazzochin M, Simons LA, Manzato E, Trevisan C. Gender differences in the impact of metabolic syndrome components on mortality in older people: A systematic review and meta-analysis. Nutr Metab Cardiovasc Dis. 2020;30(9):1452-1464. PubMed, CrossRef
  6. Ramezankhani A, Azizi F, Hadaegh F. Gender differences in changes in metabolic syndrome status and its components and risk of cardiovascular disease: a longitudinal cohort study. Cardiovasc Diabetol. 2022;21(1):227. PubMed, PubMedCentral, CrossRef
  7. Prasun P. Mitochondrial dysfunction in metabolic syndrome. Biochim Biophys Acta Mol Basis Dis. 2020;1866(10):165838. PubMed, CrossRef
  8. Ventura-Clapier R, Piquereau J, Veksler V, Garnier A. Estrogens, Estrogen Receptors Effects on Cardiac and Skeletal Muscle Mitochondria. Front Endocrinol (Lausanne). 2019;10:557. PubMed, PubMedCentral, CrossRef
  9. Mamikutty N, Thent ZC, Sapri SR, Sahruddin NN, Mohd Yusof MR, Suhaimi FH. The establishment of metabolic syndrome model by induction of fructose drinking water in male Wistar rats. Biomed Res Int. 2014;2014:263897. PubMed, PubMedCentral, CrossRef
  10. Lundholm L, Bryzgalova G, Gao H, Portwood N, Fält S, Berndt KD, Dicker A, Galuska D, Zierath JR, Gustafsson JA, Efendic S, Dahlman-Wright K, Khan A. The estrogen receptor α-selective agonist propyl pyrazole triol improves glucose tolerance in ob/ob mice: potential molecular mechanisms. J Endocrinol. 2019;243(2):X1. PubMed, CrossRef
  11. Chance B. Quantitative aspects of the control of oxygen utilization / transl. from engl. by Dorfman VA; ed. by Kaplansky SY. Regulation of cell metabolism. M.: Izd-vo inostr. lit-ry, 1962. P. 111-154. (In Russian).
  12. Arutiunian AV, Dubinina EE, Zybina NN. Methods for assessing free radical oxidation and the body’s antioxidant system. SPb.: IKF “Foliant”, 2000. 104 p. (In Russian).
  13. Straus W. Colorimetric determination of cytochrome c oxidase by formation of a quinoedimonium pigment from dimethyl-p-phenylenediamine. Biochim Biophys Acta. 1956;19(1):58-65. PubMed, CrossRef
  14. Putilina FE. Determination of reduced glutathione content in tissues / Prokhorova MI. Biochemical research methods (lipid and energy metabolism). L.: Izd-vo Leningr. un-ta, 1982. P. 183-187.
  15. Ohkawa H, Ohishi N, Yagi K. Reaction of linoleic acid hydroperoxide with thiobarbituric acid. J Lipid Res. 1978;19(8):1053-1057. PubMed, CrossRef
  16. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248-254. PubMed, CrossRef
  17. Ivanova O, Gorbenko N, Borikov O, Kiprych T, Taran K, Plekhova E. The impact of sex on metabolic and functional abnormalities, induced by high-fructose-diet in rats. Probl Endocr Pathol. 2023;80(3):85-93. CrossRef
  18. Lanaspa MA, Sanchez-Lozada LG, Choi YJ, Cicerchi C, Kanbay M, Roncal-Jimenez CA, Ishimoto T, Li N, Marek G, Duranay M, Schreiner G, Rodriguez-Iturb B, Nakagawa T, Kang DH, Sautin YY, Johnson RJ. Uric acid induces hepatic steatosis by generation of mitochondrial oxidative stress: potential role in fructose-dependent and -independent fatty liver. J Biol Chem. 2012;287(48):40732-40744. PubMed, PubMedCentral, CrossRef
  19. Jaiswal N, Maurya CK, Arha D, Avisetti DR, Prathapan A, Raj PS, Raghu KG, Kalivendi SV, Tamrakar AK. Fructose induces mitochondrial dysfunction and triggers apoptosis in skeletal muscle cells by provoking oxidative stress. Apoptosis. 2015;20(7):930-947. PubMed, CrossRef
  20. Lemos GO, Torrinhas RS, Waitzberg DL. Nutrients, Physical Activity, and Mitochondrial Dysfunction in the Setting of Metabolic Syndrome. Nutrients. 2023;15(5):1217. PubMed, PubMedCentral, CrossRef
  21. De Oliveira MC, Campos-Shimada LB, Marçal-Natali MR, Ishii-Iwamoto EL, Salgueiro-Pagadigorria CL. A Long-term Estrogen Deficiency in Ovariectomized Mice is Associated with Disturbances in Fatty Acid Oxidation and Oxidative Stress. Rev Bras Ginecol Obstet. 2018;40(5):251-259. PubMed, PubMedCentral, CrossRef
  22. Henriksen EJ, Diamond-Stanic MK, Marchionne EM. Oxidative stress and the etiology of insulin resistance and type 2 diabetes. Free Radic Biol Med. 2011;51(5):993-999. PubMed, PubMedCentral, CrossRef
  23. Masenga SK, Kabwe LS, Chakulya M, Kirabo A. Mechanisms of Oxidative Stress in Metabolic Syndrome. Int J Mol Sci. 2023;24(9):7898. PubMed, PubMedCentral, CrossRef
  24. Li A, Zheng N, Ding D. Mitochondrial abnormalities: a hub in metabolic syndrome-related cardiac dysfunction caused by oxidative stress. Heart Fail Rev. 2022;27(4):1387-1394. PubMed, PubMedCentral, CrossRef
  25. Jia G, Aroor AR, Sowers JR. Estrogen and mitochondria function in cardiorenal metabolic syndrome. Prog Mol Biol Transl Sci. 2014;127:229-249. PubMed, PubMedCentral, CrossRef
  26. Klinge MC. Estrogenic control of mitochondrial function and biogenesis. J Cell Biochem. 2008;105(6):1342-1351. PubMed, PubMedCentral, CrossRef
  27.  Liu M, Lv J, Pan Z, Wang D, Zhao L, Guo X. Mitochondrial dysfunction in heart failure and its therapeutic implications. Front Cardiovasc Med. 2022;9:945142. PubMed, PubMedCentral, CrossRef
  28. Bisaccia G, Ricci F, Gallina S, Di Baldassarre A, Ghinassi B. Mitochondrial Dysfunction and Heart Disease: Critical Appraisal of an Overlooked Association. Int J Mol Sci. 2021;22(2):614. PubMed, PubMedCentral, CrossRef
  29. Moulin M, Piquereau J, Mateo P, Fortin D, Rucker-Martin C, Gressette M, Lefebvre F, Gresikova M, Solgadi A, Veksler V, Garnier A, Ventura-Clapier R. Sexual dimorphism of doxorubicin-mediated cardiotoxicity: potential role of energy metabolism remodeling. Circ Heart Fail. 2015;8(1):98-108. PubMed, CrossRef
  30. Ribeiro RF Jr, Ronconi KS, Morra EA, Do Val Lima PR, Porto ML, Vassallo DV, Figueiredo SG, Stefanon I. Sex differences in the regulation of spatially distinct cardiac mitochondrial subpopulations. Mol Cell Biochem. 2016;419(1-2):41-51. PubMed, CrossRef
  31. Colom B, Oliver J, Roca P, Garcia-Palmer FJ. Caloric restriction and gender modulate cardiac muscle mitochondrial H2O2 production and oxidative damage. Cardiovasc Res. 2007;74(3):456-465. PubMed, CrossRef
  32. Ventura-Clapier R, Moulin M, Piquereau J, Lemaire C, Mericskay M, Veksler V, Garnier A. Mitochondria: a central target for sex differences in pathologies. Clin Sci (Lond). 2017;131(9):803-822. PubMed, CrossRef
  33. Mooga VP, White CR, Giordano-Mooga S. Estrogen and mitochondrial function in disease. Eds. Taskin E, Guven C, Sevgiler Y. Mitochondrial Diseases. IntechOpen, 2018. Ch. 18. Available at https://www.intechopen.com/chapters/58585.  CrossRef
  34. Mogensen M, Sahlin K, Fernström M, Glintborg D, Vind BF, Beck-Nielsen H, Højlund K. Mitochondrial respiration is decreased in skeletal muscle of patients with type 2 diabetes. Diabetes. 2007;56(6):1592-1599. PubMed, CrossRef
  35. Petersen KF, Dufour S, Befroy D, Garcia R, Shulman GI. Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N Engl J Med. 2004;350(7):664-671. PubMed, PubMedCentral, CrossRef
  36. Kim JY, Hickner RC, Cortright RL, Dohm GL, Houmard JA. Lipid oxidation is reduced in obese human skeletal muscle. Am J Physiol Endocrinol Metab. 2000;279(5):E1039-E1044. PubMed, CrossRef
  37. Ozcan C, Bienengraeber M, Dzeja PP, Terzic A. Potassium channel openers protect cardiac mitochondria by attenuating oxidant stress at reoxygenation. Am J Physiol Heart Circ Physiol. 2002;282(2):H531-H539. PubMed, CrossRef
  38. Santos DL, Palmeira CM, Seiça R, Dias J, Mesquita J, Moreno AJ, Santos MS. Diabetes and mitochondrial oxidative stress: a study using heart mitochondria from the diabetic Goto-Kakizaki rat. Mol Cell Biochem. 2003;246(1-2):163-170. CrossRef
  39. Duncan JG, Fong JL, Medeiros DM, Finck BN, Kelly DP. Insulin-resistant heart exhibits a mitochondrial biogenic response driven by the peroxisome proliferator-activated receptor-alpha/PGC-1alpha gene regulatory pathway. Circulation. 2007;115(7):909-917. PubMed, PubMedCentral, CrossRef
  40. Kim JA, Wei Y, Sowers JR. Role of mitochondrial dysfunction in insulin resistance. Circ Res. 2008;102(4):401-414. PubMed, PubMedCentral, CrossRef
  41. Chowdhury SR, Djordjevic J, Albensi BC, Fernyhough P. Simultaneous evaluation of substrate-dependent oxygen consumption rates and mitochondrial membrane potential by TMRM and safranin in cortical mitochondria. Biosci Rep. 2015;36(1):e00286. PubMed, PubMedCentral, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.