Ukr.Biochem.J. 2025; Volume 97, Issue 1, Jan-Feb, pp. 5-24

doi: https://doi.org/10.15407/ubj97.01.005

Experimental cancer rat models

Yu. D. Vinnichuk*, O. M. Platonov, O. O. Gryshchuk, S. V. Komisarenko

Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv;
*e-mail: vinnichukju@gmail.com

Received: 06 August 2024; Revised: 17 December 2024;
Accepted: 21 February 2025; Available on-line: 03 March 2025

Experimental rat models are widely used in cancer research. This is facilitated by the diversity of existing inbred animal lines and their relatively low cost. The purpose of this review was to analyze and systematize the publications 2000-2024 selected in PubMed and in national author databases on various cancer rat models. The advantages, disadvantages, and prospects of using these models in the study of different­ aspects of cancer pathology are discussed. The information will help researchers choos an adequate experimental rat model to study the mechanisms of cancer development and the possibility of its treatment.

Keywords: , , , , ,


References:

  1. Global Cancer Observatory. Regime of access : https://gco.iarc.fr/en
  2. National Cancer Registry of Ukraine (NCRU). Regime of access : http://www.ncru.inf.ua/publications/index.htm
  3. Chekhun VF. Retro- and prospective analysis of achievements and problems in “tumor-organism” relationship investigations. Oncology. Hematology. Chemotherapy. 2022; (6(79)):8-10. (In Ukrainian).
  4. Diagnostic immunopathology. Second edition. Editors: Colvin RB, Bhan AK, McCluskey RT. New York: Raven Press, 1994. 820 p.
  5. Mendes N, Dias Carvalho P, Martins F, Mendonça S, Malheiro AR, Ribeiro A, Carvalho J, Velho S. Animal Models to Study Cancer and Its Microenvironment. Adv Exp Med Biol. 2020;1219:389-401. PubMed, CrossRef
  6. Postevka ID, Ivashchuk OL, Davydenko IS, Bodiaka VYu. Model of tumorous affection of the mammary gland. Clin Experim Pathol. 2016; 15(4(58)): 88-91. (In Ukrainian).
  7.  Gür T, Demir H, Kotan MÇ. Tumor markers and biochemical parameters in colon cancer patients before and after chemotherapy. Asian Pac J Cancer Prev. 2011;12(11):3147-3150. PubMed
  8. Veceric Z, Cerar A. Comparison of wistar vs. fischer rat in the incidence of 1,2-dimethylhydrasine induced intestinal tumors. Radiol Oncol. 2004;38(1):227-234.
  9. Olson B, Li Y, Lin Y, Liu ET, Patnaik A. Mouse Models for Cancer Immunotherapy Research. Cancer Discov. 2018;8(11):1358-1365. PubMed, PubMedCentral,CrossRef
  10. Zhou Y, Xia J, Xu S, She T, Zhang Y, Sun Y, Wen M, Jiang T, Xiong Y, Lei J. Experimental mouse models for translational human cancer research. Front Immunol. 2023;14:1095388. PubMed, PubMedCentral, CrossRef
  11. Chen D, An X, Ouyang X, Cai J, Zhou D, Li QX. In vivo pharmacology models for cancer target research. Methods Mol Biol. 2019;1953:183-211. PubMed, CrossRef
  12. Gargiulo G. Next-generation in vivo modeling of human cancers. Front Oncol. 2018;8:429. PubMed, PubMedCentral, CrossRef
  13. Rytsyk OB, Fira IS, Lykhatskyi PH. Reseveratrol as a cytoprotective action for induced carcinogenesis in rats. Med Clin Chem. 2021;23(1):13-20. (In Ukrainian). CrossRef
  14. Ma S. Experimental models for preclinical cancer research. Exp Cell Res. 2023;429(1):113643. PubMed, CrossRef
  15. Langdon SP. Animal modeling of cancer pathology and studying tumor response to therapy. Curr Drug Targets. 2012;13(12):1535-1547. PubMed, CrossRef
  16. Mouse Genome Sequencing Consortium; Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF, Agarwal P, Agarwala R, Ainscough R, Alexandersson M, An P. et al. Initial sequencing and comparative analysis of the mouse genome. Nature. 2002;420(6915):520-562. PubMed, CrossRef
  17. Carlson AL, Carrazco-Carrillo J, Loder A, Elkhadragy L, Schachtschneider KM, Padilla-Benavides T. The oncopig as an emerging model to investigate copper regulation in cancer. Int J Mol Sci. 2022;23(22):14012. PubMed, PubMedCentral, CrossRef
  18. Korinek V. Special Issue: Animal modeling in cancer. Genes (Basel). 2020;11(9):1009. PubMed, PubMedCentral, CrossRef
  19. Cekanova M, Rathore K. Animal models and therapeutic molecular targets of cancer: utility and limitations. Drug Des Devel Ther. 2014;8:1911-1921. PubMed, PubMedCentral, CrossRef
  20. Lu L, Chan RL, Luo XM, Wu WK, Shin VY, Cho CH. Animal models of gastrointestinal inflammation and cancer. Life Sci. 2014;108(1):1-6. PubMed, CrossRef
  21. Irving AA, Yoshimi K, Hart ML, Parker T, Clipson L, Ford MR, Kuramoto T, Dove WF, Amos-Landgraf JM. The utility of Apc-mutant rats in modeling human colon cancer. Dis Model Mech. 2014;7(11):1215-1225. PubMed, PubMedCentral, CrossRef
  22. Ivanov AV, Valuev-Elliston VT, Tyurina DA, Ivanova ON, Kochetkov SN, Bartosch B, Isaguliants MG. Oxidative stress, a trigger of hepatitis C and B virus-induced liver carcinogenesis. Oncotarget. 2017;8(3):3895-3932. PubMed, PubMedCentral, CrossRef
  23. Plummer M, de Martel C, Vignat J, Ferlay J, Bray F, Franceschi S. Global burden of cancers attributable to infections in 2012: a synthetic analysis. Lancet Glob Health. 2016;4(9):e609-e616. PubMed, CrossRef
  24. Butel JS. Viral carcinogenesis: revelation of molecular mechanisms and etiology of human disease. Carcinogenesis. 2000;21(3):405-426. PubMed, CrossRef
  25. Wen KW, Wang L, Menke JR, Damania B. Cancers associated with human gammaherpesviruses. FEBS J. 2022;289(24):7631-7669. PubMed, PubMedCentral, CrossRef
  26. Seliem RM, Griffith RC, Harris NL, Beheshti J, Schiffman FJ, Longtine J, Kutok J, Ferry JA. HHV-8+, EBV+ multicentric plasmablastic microlymphoma in an HIV+ Man: the spectrum of HHV-8+ lymphoproliferative disorders expands. Am J Surg Pathol. 2007;31(9):1439-1445. PubMed, CrossRef
  27. Schiller JT, Lowy DR. An introduction to virus infections and human cancer. Recent Results Cancer Res. 2021;217:1-11. PubMed, PubMedCentral, CrossRef
  28. Lewis SD, Hickman-Davis JM, Bergdall VK. Institutional animal care and use committee considerations regarding the use of virus-induced carcinogenesis and oncolytic viral models. ILAR J. 2016;57(1):86-94. PubMed, CrossRef
  29. Mesri EA, Feitelson MA, Munger K. Human viral oncogenesis: a cancer hallmarks analysis. Cell Host Microbe. 2014;15(3):266-282. PubMed, PubMedCentral, CrossRef
  30. Akkina R, Barber DL, Bility MT, Bissig KD, Burwitz BJ, Eichelberg K, Endsley JJ, Garcia JV, Hafner R, Karakousis PC, Korba BE, Koshy R, Lambros C, Menne S, Nuermberger EL, Ploss A, Podell BK, Poluektova LY, Sanders-Beer BE, Subbian S, Wahl A. Small animal models for humanimmunodeficiency virus (HIV), hepatitis B, and tuberculosis: proceedings of an NIAID workshop. Curr HIV Res. 2020;18(1):19-28. PubMed, PubMedCentral, CrossRef
  31.  Suresh M, Menne S. Application of the woodchuck animal model for the treatment of hepatitis B virus-induced liver cancer. World J Gastrointest Oncol. 2021;13(6):509-535. PubMed, PubMedCentral, CrossRef
  32. Bernstein ID, Wright PW, Cohen E. Generation of cytotoxic lymphocytes in vitro: response of immune rat spleen cells to a syngeneic gross virus-induced lymphoma in mixed lymphocyte-tumor culture. J Immunol. 1976;116(5):1367-1372. PubMed, CrossRef
  33. Fernandez-Cruz E, Halliburton B, Feldman JD. In vivo elimination by specific effector cells of an established syngeneic rat moloney virus-induced sarcoma. J Immunol. 1979;123(4):1772-1777. PubMed, CrossRef
  34. Soffritti M, Minardi F, Maltoni C. Physical Carcinogens. In: Kufe DW, Pollock RE, Weichselbaum RR, et al., editors. Holland-Frei Cancer Medicine. 6th edition. Hamilton (ON): BC Decker; 2003. Chapter 21. Available from: https://www.ncbi.nlm.nih.gov/books/NBK13884/
  35. Kemp CJ. Animal models of chemical carcinogenesis: driving breakthroughs in cancer research for 100 years. Cold Spring Harb Protoc. 2015;2015(10):865-874. PubMed, PubMedCentral, CrossRef
  36. Bousquet G, Janin A. Patient-derived xenograft: an adjuvant technology for the treatment of metastatic disease. Pathobiology. 2016;83(4):170-176. PubMed, CrossRef
  37. Paget S. The distribution of secondary growths in cancer of the breast. Lancet. 1889;133(3421): 571-573. CrossRef
  38. Sordat B, Wang WR. Human colorectal tumor xenografts in nude mice: expression of malignancy. Behring Inst Mitt. 1984;(74):291-300. PubMed
  39. Yamashita T. Manifestation of metastatic potential in human gastric cancer implanted into the stomach wall of nude mice. Jpn J Cancer Res. 1988;79(8):945-951. PubMed, PubMedCentral, CrossRef
  40. Furukawa T, Fu X, Kubota T, Watanabe M, Kitajima M, Hoffman RM. Nude mouse metastatic models of human stomach cancer constructed using orthotopic implantation of histologically intact tissue. Cancer Res. 1993;53(5):1204-1208. PubMed
  41. Vezeridis MP, Doremus CM, Tibbetts LM, Tzanakakis G, Jackson BT. Invasion and metastasis following orthotopic transplantation of human pancreatic cancer in the nude mouse. J Surg Oncol. 1989;40(4):261-265. PubMed, CrossRef
  42. Philyppov IB, Sotkis GV, Rock A, Roudbaraki M, Bonnal JL, Mauroy B, Prevarskaya N, Shuba YM. Alterations in detrusor contractility in rat model of bladder cancer. Sci Rep. 2020;10(1):19651. PubMed, PubMedCentral, CrossRef
  43. Miller FR, McInerney D. Epithelial component of host-tumor interactions in the orthotopic site preference of a mouse mammary tumor. Cancer Res. 1988;48(13):3698-3701. PubMed
  44. White AC, Levy JA, McGrath CM. Site-selective growth of a hormone-responsive human breast carcinoma in athymic mice. Cancer Res. 1982;42(3):906-912. PubMed
  45. Dinesman A, Haughey B, Gates GA, Aufdemorte T, Von Hoff DD. Development of a new in vivo model for head and neck cancer. Otolaryngol Head Neck Surg. 1990;103(5(Pt 1)):766-774.  PubMed, CrossRef
  46. Manzotti C, Audisio RA, Pratesi G. Importance of orthotopic implantation for human tumors as model systems: relevance to metastasis and invasion. Clin Exp Metastasis. 1993;11(1):5-14. PubMed, CrossRef
  47. Watson SA, Kumari R. Theoretical Considerations in Using Animal Models of Metastasis and Brief Methodology for In Vivo Colorectal Cancer Models in SCID and Nude Mice. In: Dwek, M., Schumacher, U., Brooks, S. (eds) Metastasis Research Protocols. Methods in Molecular Biology. Humana Press, New York, NY. 2014;1070:117-129. CrossRef
  48. Fidler IJ. Metastasis: quantitative analysis of distribution and fate of tumor emboli labeled with 125I-5-iodo-2′-deoxyuridine. J Natl Cancer Inst. 1970;45(4):773-782. PubMed, CrossRef
  49. Kobaek-Larsen M, Thorup I, Diederichsen A, Fenger C, Hoitinga MR. Review of colorectal cancer and its metastases in rodent models: comparative aspects with those in humans. Comp Med. 2000;50(1):16-26. PubMed
  50. Li Y, Togashi Y, Sato S, Emoto T, Kang JH, Takeichi N, Kobayashi H, Kojima Y, Une Y, Uchino J. Spontaneous hepatic copper accumulation in Long-Evans Cinnamon rats with hereditary hepatitis. A model of Wilson’s disease. J Clin Invest. 1991;87(5):1858-1861. PubMed, PubMedCentral, CrossRef
  51. Nohmi T, Masumura K, Toyoda-Hokaiwado N. Transgenic rat models for mutagenesis and carcinogenesis. Genes Environ. 2017;39:11. PubMed, PubMedCentral, CrossRef
  52. Vasilenko IV, Sadchikov VD, Galachin KA, Surgay NN, Sidorova YD. Precancer and stomach cancer: etiology, pathogenesis, morphology, therapeutic pathomorphosis. K.: Kniga plus, 2001. 232 p. (In Russian).
  53. Vera MC, Pisani GB, Biancardi ME, Bottai H, Alvarez Mde L, Quintana AB. Comparison of two chemical models to induce hepatic preneoplasia in male Wistar rats. Ann Hepatol. 2015;14(2):259-266. PubMed, CrossRef
  54. Shao Z, Wen Q, Zhu T, Jiang W, Kang Y, Xu C, Wang S. Preventative effect of celecoxib in dimethylbenz[a]anthracene-induced ovarian cancer in rats. Arch Gynecol Obstet. 2018;298(5):981-989. PubMed, CrossRef
  55. Filinska OM, Yablonska SV, Lynchak OV, Burlaka AP, Ostrovska GV, Rybalchenko TV, Lukyanchuk EV. The influence of maleimide derivative on the development oxidative stress of liver in 1,2-dimethylhydrazine-induced colon cancer in rats. Reports Nat Acad Sci Ukraine. 2010;(8):185-190. (In Ukrainian).
  56. Perse M, Cerar A. The dimethylhydrazine induced colorectal tumours in rat – experimental colorectal carcinogenesis. Radiol Oncol. 2005;39(1):61-70.
  57. Ilhan N, Bektas I, Susam S, Ozercan IH. Protective effects of rosmarinic acid against azoxymethane-induced colorectal cancer in rats. J Biochem Mol Toxicol. 2022;36(2):e22961. PubMed, CrossRef
  58. Stearns V, Gelmann EP. Does tamoxifen cause cancer in humans? J Clin Oncol. 1998;16(2):779-792. PubMed, CrossRef
  59. Ronckers CM, Erdmann CA, Land CE. Radiation and breast cancer: a review of current evidence. Breast Cancer Res. 2005;7(1):21-32. PubMed, PubMedCentral, CrossRef
  60. Gilbert ES. Ionising radiation and cancer risks: what have we learned from epidemiology? Int J Radiat Biol. 2009;85(6):467-482. PubMed, PubMedCentral, CrossRef
  61. Broerse JJ, van Bekkum DW, Zurcher C. Radiation carcinogenesis in experimental animals. Experientia. 1989;45(1):60-69. PubMed CrossRef
  62. Sun Z, Li J, Lin M, Zhang S, Luo J, Tang Y. An RNA-seq-based expression profiling of radiation-induced esophageal injury in a rat model. Dose Response. 2019;17(2):1559325819843373. PubMed, PubMedCentral, CrossRef
  63. Hazbavi M, Zarei M, Nazaralivand R, Shahbazian H, Cheki M. Protection from ionizing radiation-induced genotoxicity and apoptosis in rat bone marrow cells by HESA-A: a new herbal-marine compound. J Bioenerg Biomembr. 2019;51(5):371-379. PubMed, CrossRef
  64. Fish BL, Gao F, Narayanan J, Bergom C, Jacobs ER, Cohen EP, Moulder JE, Orschell CM, Medhora M. Combined hydration and antibiotics with lisinopril to mitigate acute and delayed high-dose radiation injuries to multiple organs. Health Phys. 2016;111(5):410-419. PubMed, PubMedCentral, CrossRef
  65. Medhora M, Gao F, Gasperetti T, Narayanan J, Khan AH, Jacobs ER, Fish BL. Delayed effects of acute radiation exposure (deare) in juvenile and old rats: mitigation by lisinopril. Health Phys. 2019;116(4):529-545. PubMed, PubMedCentral, CrossRef
  66. Qin X, Wang S, Liu X, Duan J, Cheng K, Mu Z, Jia J, Wei Y, Yuan S. Diagnostic value of 18F-NOTA-FAPI PET/CT in a rat model of radiation-induced lung damage. Front Oncol. 2022;12:879281. PubMed, PubMedCentral, CrossRef
  67. Kurohama H, Matsuda K, Kishino M, Yoshino M, Yamaguchi Y, Matsuu-Matsuyama M, Kondo H, Mitsutake N, Kinoshita A, Yoshiura KI, Nakashima M. Comprehensive analysis for detecting radiation-specific molecules expressed during radiation-induced rat thyroid carcinogenesis. J Radiat Res. 2021;62(Supplement_1):i78-i87. PubMed, PubMedCentral, CrossRef
  68. Matsuu-Matsuyama M, Shichijo K, Matsuda K, Fujimoto N, Kondo H, Miura S, Kurashige T, Nagayama Y, Nakashima M. Age-dependent effects on radiation-induced carcinogenesis in the rat thyroid. Sci Rep. 2021;11(1):19096. PubMed, PubMedCentral, CrossRef
  69. Kokubo T, Kakinuma S, Kobayashi T, Watanabe F, Iritani R, Tateno K, Nishimura M, Nishikawa T, Hino O, Shimada Y. Age dependence of radiation-induced renal cell carcinomas in an Eker rat model. Cancer Sci. 2010;101(3):616-623. PubMed, PubMedCentral, CrossRef
  70. Ingleton PM, Underwood JC, Hunt NH, Atkins D, Giles B, Coulton LA, Martin TJ. Radiation induced osteogenic sarcoma in the rat as a model of hormone-responsive differentiated cancer. Lab Anim Sci. 1977;27(5 Pt 2):748-756. PubMed
  71. Kawai S, Yoshitomi H, Sunaga J, Alev C, Nagata S, Nishio M, Hada M, Koyama Y, Uemura M, Sekiguchi K, Maekawa H, Ikeya M, Tamaki S, Jin Y, Harada Y, Fukiage K, Adachi T, Matsuda S, Toguchida J. In vitro bone-like nodules generated from patient-derived iPSCs recapitulate pathological bone phenotypes. Nat Biomed Eng. 2019;3(7):558-570. PubMed, CrossRef
  72. National Research Council. Health Risks from Exposure to Low Levels of Ionizing Radiation: BEIR VII Phase 2. Washington, DC: The National Academies Press, 2006. 422 p. CrossRef
  73. Geraldelli D, Ribeiro MC, Medeiros TC, Comiran PK, Martins KO, Oliveira MF, Oliveira GA, Dekker RFH, Barbosa-Dekker AM, Alegranci P, Queiroz EAIF. Tumor development in rats and cancer cachexia are reduced by treatment with botryosphaeran by increasing apoptosis and improving the metabolic profile. Life Sci. 2020;252:117608. PubMed, CrossRef
  74. Bennani-Baiti N, Walsh D. Animal models of the cancer anorexia-cachexia syndrome. Support Care Cancer. 2011;19(9):1451-1463. PubMed, CrossRef
  75. Donohoe CL, Ryan AM, Reynolds JV. Cancer cachexia: mechanisms and clinical implications. Gastroenterol Res Pract. 2011;2011:601434. PubMed, PubMedCentral, CrossRef
  76. Moreira VM, Almeida D, da Silva Franco CC, Gomes RM, Palma-Rigo K, Prates KV, Tófolo LP, Malta A, Francisco FA, Pavanello A, Previate C, da Silva Silveira S, Ribeiro TA, Martins IP, de Moraes AMP, Matiusso CCI, Saavedra LPJ, de Barros Machado KG, Fabbri Corá T, Gongora A, Cardozo LE, da Silva PHO, Venci R, Vieira E, de Oliveira JC, Miranda RA, de Souza HM, Miksza D, da Costa Lima LD, de Castro-Prado MAA, Rinaldi W, de Freitas Mathias PC. Moderate exercise training since adolescence reduces Walker 256 tumour growth in adult rats. J Physiol. 2019;597(15):3905-3925. PubMed, CrossRef
  77. Cho-Chung YS. In vivo inhibition of tumor growth by cyclic adenosine 3′,5′-monophosphate derivatives. Cancer Res. 1974;34(12):3492-3496. PubMed, PubMedCentral, CrossRef
  78. Hanson RN, Franke LA, Kaplan M. Radioiodinated ligands for the estrogen receptor: tissue distribution of 17 alpha-[125I]iodovinylestradiol derivatives in normal and tumor-bearing adult female rats. Int J Rad Appl Instrum B. 1990;17(2):239-245. PubMed, CrossRef
  79. Orel VЕ, Dynnyk ОB, Syvak LA, Orel VB, Dasyukevich OJ, Rykhalskyi ОY, Galkin ОY, Dedkov АG, Golovko ТS. Changes in stiffness and morphological features of Walker-256 carcinosarcoma loaded with magnetic nanoparticles in response to a stationary magnetic field. Clin Oncol. 2023;13(1(49)):40-44. (In Ukrainian). CrossRef
  80. Orel V, Mitrelias T, Tselepi M, Golovko T, Dynnyk O, Nikolov N, Romanov A, Rykhalskiy A, Crispin Barnes C,  Yaroshenko O, Orel I, Supruniuk D, Shchepotin I. Imaging of Guerin carcinoma during magnetic nanotherapy. J Nanopharmaceutics Drug Delivery. 2014;2(1):1-11. CrossRef
  81. Zaporozhan VM, Marynyuk GS, Novikov MYu. Guerin’s carcinoma at the background of hypo- and hyperthyreoid states in the laboratory rats. Odesa Med J. 2012;(6):51-54. (In Ukrainian).
  82. Zinchenko VA, Orel VE, Belov YuA, Dzyatkovska NM, Danko MI, Romanov AV, Morozov OB, Pridatko OYu. Nonlinear kinetics of tumor volumes and spatial chaos of sarcoma 45 cell shapes after the treatment by mechanically modified doxorubicin, 40 MHz irradiation and their combination. Biopolym Cell. 2005;21(1):64-69. (In Ukrainian). CrossRef
  83. Voloshchuk TP, Potskovskii YuV, Potopalskii AI, Vorobyeva II. Effect of thioTEPA modified DNA forms and their monomeric components of varying alkylation degree on synthesis of nucleic acids in tumor cells. Biopolym Cell. 2003;19(6):513-519. (In Russian). CrossRef
  84. Pournajaf S, Afsordeh N, Pourgholami MH. In vivo C6 glioma models: an update and a guide toward a more effective preclinical evaluation of potential anti-glioblastoma drugs. Rev Neurosci. 2023;35(2):183-195. PubMed, CrossRef
  85. Liubich LD, Lisyany NI. The influence of progenitor neurocells supernatant on the lymphocytes cytotoxic function in rats with glioma. Fiziol Zh. 2015;61(4):63-70. (In Ukrainian). PubMed, CrossRef
  86. Steiniger SC, Kreuter J, Khalansky AS, Skidan IN, Bobruskin AI, Smirnova ZS, Severin SE, Uhl R, Kock M, Geiger KD, Gelperina SE. Chemotherapy of glioblastoma in rats using doxorubicin-loaded nanoparticles. Int J Cancer. 2004;109(5):759-767. PubMed, CrossRef
  87. Zavadskaya TS, Trompak OO, Taranets LP. Fotolon – mediated photodynamic therapy of experimental gliomas. Photobiol Potomed. 2013;10(1-2):81-88. (In Ukrainian).
  88. Park J, Kong C, Shin J, Park JY, Na YC, Han SH, Chang JW, Song SH, Chang WS. Combined effects of focused ultrasound and photodynamic treatment for malignant brain tumors using C6 glioma rat model. Yonsei Med J. 2023;64(4):233-242. PubMed, PubMedCentral, CrossRef
  89. Cook GJ, Pardee TS. Animal models of leukemia: any closer to the real thing? Cancer Metastasis Rev. 2013;32(1-2):63-76. PubMed, PubMedCentral, CrossRef
  90. Rolstad B. The athymic nude rat: an animal experimental model to reveal novel aspects of innate immune responses? Immunol Rev. 2001;184:136-144. PubMed, CrossRef
  91. Miyasaka Y, Wang J, Hattori K, Yamauchi Y, Hoshi M, Yoshimi K, Ishida S, Mashimo T. A high-quality severe combined immunodeficiency (SCID) rat bioresource. PLoS One. 2022;17(8):e0272950. PubMed, PubMedCentral, CrossRef
  92. Geurts AM, Cost GJ, Freyvert Y, Zeitler B, Miller JC, Choi VM, Jenkins SS, Wood A, Cui X, Meng X, Vincent A, Lam S, Michalkiewicz M, Schilling R, Foeckler J, Kalloway S, Weiler H, Ménoret S, Anegon I, Davis GD, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Jacob HJ, Buelow R. Knockout rats via embryo microinjection of zinc-finger nucleases. Science. 2009;325(5939):433. PubMed, PubMedCentral, CrossRef
  93. Mashimo T, Takizawa A, Voigt B, Yoshimi K, Hiai H, Kuramoto T, Serikawa T. Generation of knockout rats with X-linked severe combined immunodeficiency (X-SCID) using zinc-finger nucleases. PLoS One. 2010;5(1):e8870. PubMed, PubMedCentral, CrossRef
  94. Tong C, Li P, Wu NL, Yan Y, Ying QL. Production of p53 gene knockout rats by homologous recombination in embryonic stem cells. Nature. 2010;467(7312):211-213. PubMed, PubMedCentral, CrossRef
  95. Mashimo T. Gene targeting technologies in rats: zinc finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeats. Dev Growth Differ. 2014;56(1):46-52. PubMed, CrossRef
  96. Asamoto M, Toriyama-Baba H, Ohnishi T, Naito A, Ota T, Ando A, Ochiya T, Tsuda H. Transgenic rats carrying human c-Ha-ras proto-oncogene are highly susceptible to N-nitrosomethylbenzylamine induction of esophageal tumorigenesis. Jpn J Cancer Res. 2002;93(7):744-751. PubMed, PubMedCentral, CrossRef
  97. Hokaiwado N, Asamoto M, Futakuchi M, Ogawa K, Takahashi S, Shirai T. Both early and late stages of hepatocarcinogenesis are enhanced in Cx32 dominant negative mutant transgenic rats with disrupted gap junctional intercellular communication. J Membr Biol. 2007;218(1-3):101-106. PubMed, CrossRef
  98. Fukamachi K, Tanaka H, Hagiwara Y, Ohara H, Joh T, Iigo M, Alexander DB, Xu J, Long N, Takigahira M, Yanagihara K, Hino O, Saito I, Tsuda H. An animal model of preclinical diagnosis of pancreatic ductal adenocarcinomas. Biochem Biophys Res Commun. 2009;390(3):636-641. PubMed, CrossRef
  99. Guo H, Xu X, Zhang J, Du Y, Yang X, He Z, Zhao L, Liang T, Guo L. The Pivotal Role of Preclinical Animal Models in Anti-Cancer Drug Discovery and Personalized Cancer Therapy Strategies. Pharmaceuticals (Basel). 2024;17(8):1048. PubMed, PubMedCentral, CrossRef
  100. Johnson JI, Decker S, Zaharevitz D, Rubinstein LV, Venditti JM, Schepartz S, Kalyandrug S, Christian M, Arbuck S, Hollingshead M, Sausville EA. Relationships between drug activity in NCI preclinical in vitro and in vivo models and early clinical trials. Br J Cancer. 2001;84(10):1424-1431. PubMed, PubMedCentral, CrossRef
  101. The Principles of Humane Experimental Technique. Med J Aust. 1960;1(13):500. CrossRef
  102. Rezaee R, Abdollahi M. The importance of translatability in drug discovery. Expert Opin Drug Discov. 2017;12(3):237-239. PubMed, CrossRef
  103. Abdolahi S, Ghazvinian Z, Muhammadnejad S, Saleh M, Asadzadeh Aghdaei H, Baghaei K. Patient-derived xenograft (PDX) models, applications and challenges in cancer research. J Transl Med. 2022;20(1):206. PubMed, PubMedCentral, CrossRef
  104. Peehl DM, Badea CT, Chenevert TL, Daldrup-Link HE, Ding L, Dobrolecki LE, Houghton AM, Kinahan PE, Kurhanewicz J, Lewis MT, Li S, Luker GD, Ma CX, Manning HC, Mowery YM, O’Dwyer PJ, Pautler RG, Rosen MA, Roudi R, Ross BD, Shoghi KI, Sriram R, Talpaz M, Wahl RL, Zhou R. Animal models and their role in imaging-assisted Co-clinical trials. Tomography. 2023;9(2):657-680. PubMed, PubMedCentral, CrossRef
  105. Izumchenko E, Paz K, Ciznadija D, Sloma I, Katz A, Vasquez-Dunddel D, Ben-Zvi I, Stebbing J, McGuire W, Harris W, Maki R, Gaya A, Bedi A, Zacharoulis S, Ravi R, Wexler LH, Hoque MO, Rodriguez-Galindo C, Pass H, Peled N, Davies A, Morris R, Hidalgo M, Sidransky D. Patient-derived xenografts effectively capture responses to oncology therapy in a heterogeneous cohort of patients with solid tumors. Ann Oncol. 2017;28(10):2595-2605. PubMed, PubMedCentral, CrossRef
  106. Agarwal Y, Beatty C, Biradar S, Castronova I, Ho S, Melody K, Bility MT. Moving beyond the mousetrap: current and emerging humanized mouse and rat models for investigating prevention and cure strategies against HIV infection and associated pathologies. Retrovirology. 2020;17(1):8. PubMed, PubMedCentral, CrossRef
  107. Goto T. Patient-derived tumor xenograft models: toward the establishment of precision cancer medicine. J Pers Med. 2020;10(3):64. PubMed, PubMedCentral, CrossRef
  108. Gao H, Korn JM, Ferretti S, Monahan JE, Wang Y, Singh M, Zhang C, Schnell C, Yang G, Zhang Y, Balbin OA, Barbe S, Cai H, Casey F, Chatterjee S, Chiang DY, Chuai S, Cogan SM, Collins SD, Dammassa E. et al. High-throughput screening using patient-derived tumor xenografts to predict clinical trial drug response. Nat Med. 2015;21(11):1318-1325. PubMed, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.