Ukr.Biochem.J. 2025; Volume 97, Issue 2, Mar-Apr, pp. 70-76

doi: https://doi.org/10.15407/ubj97.02.070

C(60) fullerene restores gastrocnemius contractile activity in a rat model of neurogenic muscle atrophy

D. M. Nozdrenko1, M. S. Anhelov1, T. Yu. Matviienko1,
O. V. Lynchak1, O. V. Korzhyk2, Yu. M. Valetskyi3,
K. I. Bogutska1, Yu. I. Prylutskyy1*

1Taras Shevchenko National University of Kyiv, Kyiv, Ukraine;
*e-mail: prylut@ukr.net;
2Lesya Ukrainka Volyn National University, Lutsk, Ukraine;
3Municipal Institution of Higher Education
“Volyn Medical Institute”, Lutsk, Ukraine

Received: 11 March 2025; Revised: 27 March 2025;
Accepted: 25 April 2025; Available on-line: 12 May 2025

Restoration of the motor function of the musculoskeletal system impaired due to innervation dama­ge is an important clinical problem. In the study the potential therapeutic effect of C60 fullerene application was estimated in the Wistar rat model of neurogenic muscle atrophy caused by nervus ischiadicus injury. The animals were divided into the following: control, injury, injury+С60 groups. C60 fullerene aqueous solution was administrated orally for 30 days after ischiadicus injury at a daily dose of 1 mg/kg. Biomechanical parameters of gastrocnemius muscle contraction and biochemical indices (creatinine, lactate, reduced glutathione content as well as creatine phosphokinase, lactate dehydrogenase, catalase and superoxide dismutase activity) in the blood of rats were estimated on day 30 after nerve transection. It has been found that muscle strength response in the injury+С60 group was significantly enhanced, in particular, the muscle force impulse was increased by more than 30 ± 2% compared to the injury group. The studied biochemical indices of the muscle fatigue and oxidative stress in the blood of experimental animals had a pronounced tendency to increase after the initiation of the muscle neurogenic atrophy, while under the influence of C60 fullerene they decreased compared with the injury group. In our opinion, C60 fullerene prevented significant dysfunction of the gastrocnemius muscle after neurogenic atrophy by exerting an antioxidant effect and improving its contractile activity.

Keywords: , , , ,


References:

  1. Samii A, Carvalho GA, Samii M. Brachial plexus injury: factors affecting functional outcome in spinal accessory nerve transfer for the restoration of elbow flexion. J Neurosurg. 2003;98(2):307-312. PubMed, CrossRef
  2. Midrio M. The denervated muscle: facts and hypotheses. A historical review. Eur J Appl Physiol. 2006;98(1):1-21. PubMed, CrossRef
  3. Roganovic Z, Ilic S, Savic M. Radial nerve repair using an autologous denatured muscle graft: comparison with outcomes of nerve graft repair. Acta Neurochir (Wien). 2007;149(10):1033-1038. PubMed, CrossRef
  4. Faroni A, Mobasseri SA, Kingham PJ, Reid AJ. Peripheral nerve regeneration: experimental strategies and future perspectives. Adv Drug Deliv Rev. 2015;82-83:160-167. PubMed, CrossRef
  5. Hunt D, Hossain-Ibrahim K, Mason MR, Coffin RS, Lieberman AR, Winterbottom J, Anderson PN. ATF3 upregulation in glia during Wallerian degeneration: differential expression in peripheral nerves and CNS white matter. BMC Neurosci. 2004;5:9. PubMed, PubMed, CrossRef
  6. Cohen S, Nathan JA, Goldberg AL. Muscle wasting in disease: molecular mechanisms and promising therapies. Nat Rev Drug Discov. 2015;14(1):58-74. PubMed, CrossRef
  7. Siu PM. Muscle apoptotic response to denervation, disuse, and aging. Med Sci Sports Exerc. 2009;41(10):1876-1886. PubMed, CrossRef
  8. O’Leary MF, Vainshtein A, Carter HN, Zhang Y, Hood DA. Denervation-induced mitochondrial dysfunction and autophagy in skeletal muscle of apoptosis-deficient animals. Am J Physiol Cell Physiol. 2012;303(4):C447-C454. PubMed, CrossRef
  9. Huang Z, Fang Q, Ma W, Zhang Q, Qiu J, Gu X, Yang H, Sun H. Skeletal Muscle Atrophy Was Alleviated by Salidroside Through Suppressing Oxidative Stress and Inflammation During Denervation. Front Pharmacol. 2019;10:997. PubMed, PubMed, CrossRef
  10. Fu SY, Gordon T. The cellular and molecular basis of peripheral nerve regeneration. Mol Neurobiol. 1997;14(1-2):67-116. PubMed, CrossRef
  11. Ferreira CA, Ni D, Rosenkrans ZT, Cai W. Scavenging of reactive oxygen and nitrogen species with nanomaterials. Nano Res. 2018;11(10):4955-4984. PubMed, PubMed, CrossRef
  12. Eswaran SV. Water soluble nanocarbon materials: a panacea for all? Curr Sci. 2018;114(9):1846-1850. CrossRef
  13. Nozdrenko DM, Bogutska KI, Prylutskyy YI, Korolovych VF, Evstigneev MP, Ritter U, Scharff P. Impact of C60 fullerene on the dynamics of force-speed changes in soleus muscle of rat at ischemia-reperfusion injury. Fiziol Zh. 2015;61(2):48-59. PubMed, CrossRef
  14. Nozdrenko DM, Bogutska KI, Pampuha IV, Gonchar OO, Abramchuk OM, Prylutskyy YuI. Biochemical and tensometric analysis of C60 fullerenes protective effect on the development of skeletal muscle fatigue. Ukr Biochem J. 2021;93(4):93-102. CrossRef
  15. Nozdrenko DM, Gonchar OO, Nurishchenko NE, Stetska VO, Matviienko TYu, Stepanyuk YaV, Bogutska KI, Prylutskyy YuI. C60 fullerene effect on the functional activity of rat muscle gastrocnemius during its regeneration after the open injury. Ukr Biochem J. 2024;96(6):74-81. CrossRef
  16. Nozdrenko D, Prylutska S, Bogutska K, Nurishchenko NY, Abramchuk O, Motuziuk O, Prylutskyy Y, Scharff P, Ritter U. Effect of C60 fullerene on recovery of muscle soleus in rats after atrophy induced by achillotenotomy. Life (Basel). 2022;12(3):332. PubMed, PubMed, CrossRef
  17. Schuetze C, Ritter U, Scharff P, Fernekorn U, Prylutska S, Bychko A, Rybalchenko V, Prylutskyy Yu. IInteraction of N-fluorescein-5-isothiocyanate pyrrolidine-C60 with a bimolecular lipid model membrane. Mater Sci Engineer C. 2011;31(5): 1148-1150. CrossRef
  18. Prylutskyy YuI, Cherepanov VV, Evstigneev MP, Kyzyma OA, Petrenko VI, Styopkin VI, Bulavin LA, Davidenko NA, Wyrzykowski D, Woziwodzka A, Piosik J, Kaźmierkiewicz R, Ritter U. Structural self-organization of C60 and cisplatin in physiological solution. Phys Chem Chem Phys. 2015;17(39):26084-26092. PubMed, CrossRef
  19. Gharbi N, Pressac M, Hadchouel M, Szwarc H, Wilson SR, Moussa F. [60]fullerene is a powerful antioxidant in vivo with no acute or subacute toxicity. Nano Lett. 2005;5(12):2578-2585. PubMed, CrossRef
  20. Saito H, Dahlin LB. Expression of ATF3 and axonal outgrowth are impaired after delayed nerve repair. BMC Neurosci. 2008;9:88. PubMed, PubMed, CrossRef
  21. Gordon T, Fu SY. Long-term response to nerve injury. Adv Neurol. 1997;72:185-199. PubMed
  22. Brancaccio P, Lippi G, Maffulli N. Biochemical markers of muscular damage. Clin Chem Lab Med. 2010;48(6):757-767. PubMed, CrossRef
  23. Kataoka K, Kanje M, Dahlin LB. Induction of activating transcription factor 3 after different sciatic nerve injuries in adult rats. Scand J Plast Reconstr Surg Hand Surg. 2007;41(4):158-166. PubMed, CrossRef
  24. Jones DA. High-and low-frequency fatigue revisited. Acta Physiol Scand. 1996;156(3):265-270. PubMed, CrossRef
  25. Ivanics T, Miklós Z, Ruttner Z, Bátkai S, Slaaf DW, Reneman RS, Tóth A, Ligeti L. Ischemia/reperfusion-induced changes in intracellular free Ca2+ levels in rat skeletal muscle fibers – an in vivo study. Pflugers Arch. 2000;440(2):302-308. PubMed, CrossRef
  26. Xu X, Zhang CJ, Talifu Z, Liu WB, Li ZH, Wang XX, Du HY, Ke H, Yang DG, Gao F, Du LJ, Yu Y, Jing YL, Li JJ. The effect of glycine and N-acetylcysteine on oxidative stress in the spinal cord and skeletal muscle after spinal cord injury. Inflammation. 2024;47(2):557-571. PubMed, PubMed, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.