Ukr.Biochem.J. 2025; Volume 97, Issue 2, Mar-Apr, pp. 90-104

doi: https://doi.org/10.15407/ubj97.02.090

Physiological and biochemical parameters of winter wheat Triticum aestivum L. plants after seed treatment with fullerene C(60)

S. Prylutska1*, T. Tkachenko1, M. Petrovsky2

1National University of Life and Environmental Sciences of Ukraine, Kyiv;
2Taras Shevchenko National University of Kyiv, Ukraine.
*e-mail: psvit_1977@ukr.net

Received: 21 February 2025; Revised: 25 March 2025;
Accepted: 25 April 2025; Available on-line: 12 May 2025

Extreme climatic conditions, pests, diseases and environmental pollution significantly impact the cultivation of agricultural products and the quality of plant raw materials. It is assumed that nanostructured carbon materials, particularly fullerene C60, due to antioxidant, antiviral, and antibacterial properties can be used to prevent these effects. This study aimed to evaluate the effect of pre-sowing treatment of wheat seeds with fullerene C60 on the state of plants 14 days after germination. The seeds of the winter wheat Triticum aestivum L. of the Patras and Akter varieties were treated with a colloidal solution of fullerene C60 (0.1-1.0 µg/ml) for 3 h. Biomorphometric parameters, photosynthetic pigments, phenolic compounds, MDA content and catalase activity were assessed using standard techniques. It was shown that seeds treatment with fullerene C60 was followed by the greater increase of both the fresh weight of Akter plants and shoot length of Patras plants as compared to untreated controls. A dose-dependent effect of fullerene C60 on the physiological and bio­chemical parameters of the plants was revealed. Photosynthetic activity in plants of both wheat varieties was enhanced after seed treatment with C60 in low (0.1-0.2 µg/ml) concentrations as evidenced by the increased content of chlorophylls a, while at high (0.5-1.0 µg/ml) C60 concentrations it decreased against the background of increased carotenoids content. The enhancement of antioxidant defense induced by C60 treatment at concentrations of 0.5-1.0 µg/ml was observed, as indicated by an increase in the content of phenolic compounds and activation of catalase. The positive effect of wheat seeds treatment with fullerene C60 indicates the potential use of carbon nanoparticles in agrobiotechnologies to improve plant growth and stress resistance­.

Keywords: , , , , , , ,


References:

  1. Sadak MS. Impact of silver nanoparticles on plant growth, some biochemical aspects, and yield of fenugreek plant (Trigonella foenum-graecum). Bull Nat Res Cent. 2019;43(1):38. CrossRef
  2. Khan ST, Adil SF, Shaik MR, Alkhathlan HZ, Khan M, Khan M. Engineered Nanomaterials in Soil: Their Impact on Soil Microbiome and Plant Health. Plants (Basel). 2021;11(1):109. PubMed, PubMed, CrossRef
  3. Deng Y, White JC, Xing B. Interactions between engineered nanomaterials and agricultural crops: Implications for food safety. J Zhejiang Univ Sci A. 2014;15(8):552-572. CrossRef
  4. Sharma MMM, Kapoor D, Loyal A, Kumar R, Sharma P, Husen A. Positive and Negative Impact of Carbon-Based Nanomaterials on the Plant Growth Performance. In: Husen A. (eds). Emerging Carbon Nanomaterials for Sustainable Agricultural Practices. Smart Nanomaterials Technology. Springer, Singapore, 2025. P. 63-83. CrossRef
  5. Tariq Z, Fatima A, Khurram S, Haider Z, Hassan S, Hussain MI, Anjum S.Influence of Carbon-Based Nanomaterials on Plant Cell Toxicity, Nutritional, and Active Compound Accumulation. In: Husen A. (eds). Emerging Carbon Nanomaterials for Sustainable Agricultural Practices. Smart Nanomaterials Technology. Springer, Singapore, 2025. P. 149-180. CrossRef
  6. Chaachouay N, Zidane L, Husen A. Carbon Nanomaterials for Healthier Crop Plants Growth and Enhanced Yield. In: Husen, A. (eds). Emerging Carbon Nanomaterials for Sustainable Agricultural Practices. Smart Nanomaterials Technology. Springer, 2025. P. 31-46. CrossRef
  7. Lin S, Reppert J, Hu Q, Hudson JS, Reid ML, Ratnikova TA, Rao AM, Luo H, Ke PC. Uptake, translocation, and transmission of carbon nanomaterials in rice plants. Small. 2009;5(10):1128-1132. PubMed, CrossRef
  8. De La Torre-Roche R, Hawthorne J, Deng Y, Xing B, Cai W, Newman LA, Wang C, Ma X, White JC. Fullerene-enhanced accumulation of p,p’-DDE in agricultural crop species. Environ Sci Technol. 2012;46(17):9315-9323. PubMed, CrossRef
  9. Avanasi R, Jackson WA, Sherwin B, Mudge JF, Anderson TA. C60 fullerene soil sorption, biodegradation, and plant uptake. Environ Sci Technol. 2014;48(5):2792-2797. PubMed, CrossRef
  10.  Liu Q, Chen B, Wang Q, Shi X, Xiao Z, Lin J, Fang X. Carbon nanotubes as molecular transporters for walled plant cells. Nano Lett. 2009;9(3):1007-1010. PubMed, CrossRef
  11. Serag MF, Kaji N, Habuchi S, Bianco A, Baba Y. Nanobiotechnology meets plant cell biology: carbon nanotubes as organelle targeting nanocarriers. RSC Advs. 2013;3(15):4856-4862. CrossRef
  12. Giraldo JP, Landry MP, Faltermeier SM, McNicholas TP, Iverson NM, Boghossian AA, Reuel NF, Hilmer AJ, Sen F, Brew JA, Strano MS. Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nat Mater. 2014;13(4):400-408. PubMed, CrossRef
  13. Velikova V, Petrova N, Kovács L, Petrova A, Koleva D, Tsonev T, Taneva S, Petrov P, Krumova S. Single-Walled Carbon Nanotubes Modify Leaf Micromorphology, Chloroplast Ultrastructure and Photosynthetic Activity of Pea Plants. Int J Mol Sci. 2021;22(9):4878. PubMed, PubMed, CrossRef
  14. Sigala-Aguilar NA, López MG, Fernández-Luqueño F. Carbon-based nanomaterials as inducers of biocompounds in plants: Potential risks and perspectives. Plant Physiol Biochem. 2024;212:108753. PubMed, CrossRef
  15. Nokandeh S, Ramezani M, Gerami M. The physiological and biochemical responses to engineered green graphene/metal nanocomposites in Stevia rebaudiana. J Plant Biochem Biotechnol. 2021;30:579-585. CrossRef
  16. McGehee DL, Lahiani MH, Irin F, Green MJ, Khodakovskaya MV. Multiwalled Carbon Nanotubes Dramatically Affect the Fruit Metabolome of Exposed Tomato Plants. ACS Appl Mater Interfaces. 2017;9(38):32430-32435. PubMed, CrossRef
  17. Dumanović J, Nepovimova E, Natić M, Kuča K, Jaćević V. The Significance of Reactive Oxygen Species and Antioxidant Defense System in Plants: A Concise Overview. Front Plant Sci. 2021;11:552969. PubMed, PubMed, CrossRef
  18. Fatemi F, Abdollahi MR, Mirzaie-Asl A, Dastan D, Papadopoulou K. Phytochemical, antioxidant, enzyme activity and antifungal properties of Satureja khuzistanica in vitro and in vivo explants stimulated by some chemical elicitors. Pharm Biol. 2020;58(1):286-296. PubMed, PubMed, CrossRef
  19. Sharifi P, Bidabadi SS, Zaid A, Abdel Latef AAH. Efficacy of multi-walled carbon nanotubes in regulating growth performance, total glutathione and redox state of Calendula officinalis L. cultivated on Pb and Cd polluted soil. Ecotoxicol Environ Saf. 2021;213:112051. PubMed, CrossRef
  20. 20. Xiong JL, Ma N. Transcriptomic and Metabolomic Analyses Reveal That Fullerol Improves Drought Tolerance in Brassica napus L. Int J Mol Sci. 2022;23(23):15304. PubMed, PubMed, CrossRef
  21. 21. Zhang X, Cao H, Wang H, Zhang R, Jia H, Huang J, Zhao J, Yao J. Effects of graphene on morphology, microstructure and transcriptomic profiling of Pinus tabuliformis Carr. roots. PLoS One. 2021;16(7):e0253812. PubMed, PubMed, CrossRef
  22. Hamdi H, De La Torre-Roche R, Hawthorne J, White JC. Impact of non-functionalized and amino-functionalized multiwall carbon nanotubes on pesticide uptake by lettuce (Lactuca sativa L.). Nanotoxicology. 2015;9(2):172-180. PubMed, CrossRef
  23. Khodakovskaya MV, de Silva K, Biris AS, Dervishi E, Villagarcia H. Carbon nanotubes induce growth enhancement of tobacco cells. ACS Nano. 2012;6(3):2128-2135. PubMed, CrossRef
  24. Lahiani MH, Dervishi E, Chen J, Nima Z, Gaume A, Biris AS, Khodakovskaya MV. Impact of carbon nanotube exposure to seeds of valuable crops. ACS Appl Mater Interfaces. 2013;5(16):7965-7973. PubMed, CrossRef
  25. Bianco A, Kostarelos K, Prato M. Applications of carbon nanotubes in drug delivery. Curr Opin Chem Biol. 2005;9(6):674-679. PubMed, CrossRef
  26. Torney F, Trewyn BG, Lin VS, Wang K. Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotechnol. 2007;2(5):295-300. PubMed, CrossRef
  27. Nima ZA, Lahiani MH, Watanabe F, Xu Y, Khodakovskaya MV, Biris AS. Plasmonically active nanorods for delivery of bio-active agents and high-sensitivity SERS detection in planta. RSC Adv. 2014; 4(110): 64985-64993. CrossRef
  28. Shen CX, Zhang QF, Li J, Bi FC, Yao N. Induction of programmed cell death in Arabidopsis and rice by single-wall carbon nanotubes. Am J Bot. 2010;97(10):1602-1609. PubMed, CrossRef
  29. Begum P, Ikhtiari R, Fugetsu B, Matsuoka M, Akasaka T, Watari F. Phytotoxicity of multi-walled carbon nanotubes assessed by selected plant species in the seedling stage. Appl Surf Sci. 2012;262:120-124. CrossRef
  30. Shvedova AA, Pietroiusti A, Fadeel B, Kagan VE. Mechanisms of carbon nanotube-induced toxicity: focus on oxidative stress. Toxicol Appl Pharmacol. 2012;261(2):121-133. PubMed, PubMed, CrossRef
  31. He A, Jiang J, Ding J, Sheng GD. Blocking effect of fullerene nanoparticles (nC60) on the plant cell structure and its phytotoxicity. Chemosphere. 2021;278:130474. PubMed, PubMed, CrossRef
  32. Schuetze C, Ritter U, Scharff P, Fernekorn U, Prylutska S, Bychko A, Rybalchenko V, Prylutskyy Yu. Interaction of N-fluorescein-5-isothiocyanate pyrrolidine-C60 with a bimolecular lipid model membrane. Mater Sci Eng C. 2011;31(5):1148-1150. CrossRef
  33. Prylutska S, Grynyuk I, Skaterna T, Horak I, Grebinyk A, Drobot L, Matyshevska O, Senenko A, Prylutskyy Y, Naumovets A, Ritter U, Frohme M. Toxicity of C60 fullerene-cisplatin nanocomplex against Lewis lung carcinoma cells. Arch Toxicol. 2019;93(5):1213-1226. PubMed, CrossRef
  34. Winter wheat Patras – DSV. Regime of access : https://www.dsv-ukraina.com.ua/sorte/664.
  35. Production of soil mixtures, substrates and fertilizers for indoor and garden plants. Regime of access : http://floriada.com.ua/g_universal.php.
  36. Lichtenthaler HK, Wellburn AR. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem Soc Trans. 1983;11(5):591-592. CrossRef
  37. Cakmak I, Horst WJ. Effect of aluminium on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max). Physiol Plant. 1991;83(3):463-468. CrossRef
  38. Heath RL, Packer L. Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys. 1968;125(1):189-198. PubMed, CrossRef
  39. Lucas BN, Dalla Nora, Boeira CP, Verruck S, da Rosa CS. Determination of total phenolic compounds in plant extracts via Folin-Ciocalteu’s method adapted to the usage of digital images. Food Sci Technol. 2022;42:e35122. CrossRef
  40. Luna CM, Pastori GM, Driscoll S, Groten K, Bernard S, Foyer CH. Drought controls on H2O2 accumulation, catalase (CAT) activity and CAT gene expression in wheat. J Exp Bot. 2005;56(411):417-423.PubMed, CrossRef
  41. Winter-hardy varieties of winter wheat. (n.d.). February 09, 2022. Regime of access: https://consumerhm.gov.ua/2966-zimostijki-sorti-ozimoji-pshenitsi.
  42. Wheat seeds Akter DSV-Ukraine. Regime of access: https://superagronom.com/nasinnya-pshenicya-ozima/akter-id9728.
  43. Al-Khayri JM, Rashmi R, Surya Ulhas R, Sudheer WN, Banadka A, Nagella P, Aldaej MI, Rezk AA, Shehata WF, Almaghasla MI. The Role of Nanoparticles in Response of Plants to Abiotic Stress at Physiological, Biochemical, and Molecular Levels. Plants (Basel). 2023;12(2):292. PubMed, PubMed, CrossRef
  44. Prylutska SV, Franskevych DV, Yemets AI. Cellular biological and molecular genetic effects of carbon nanomaterials in plants. Cytol Genet. 2022;56(4):351-360. CrossRef
  45. Begum P, Fugetsu B. Phytotoxicity of multi-walled carbon nanotubes on red spinach (Amaranthus tricolor L) and the role of ascorbic acid as an antioxidant. J Hazard Mater. 2012;243:212-222. PubMed, CrossRef
  46. Lahiani MH, Dervishi E, Ivanov I, Chen J, Khodakovskaya M. Comparative study of plant responses to carbon-based nanomaterials with different morphologies. Nanotechnology. 2016;27(26):265102. PubMed, CrossRef
  47. Khodakovskaya MV, Kim BS, Kim JN, Alimohammadi M, Dervishi E, Mustafa T, Cernigla CE. Carbon nanotubes as plant growth regulators: effects on tomato growth, reproductive system, and soil microbial community. Small. 2013;9(1):115-123. PubMed, CrossRef
  48. Buziashvili A, Prylutska S, Yemets A. Effect of fullerene C60 on tomato plants. Innov Biosyst Bioeng. 2024;8(4):13-22. CrossRef
  49. Li P, Xia Y, Song K, Liu D. The Impact of Nanomaterials on Photosynthesis and Antioxidant Mechanisms in Gramineae Plants: Research Progress and Future Prospects. Plants (Basel). 2024;13(7):984. PubMed, PubMed, CrossRef
  50.  Newkirk GM, de Allende P, Jinkerson RE, Giraldo JP. Nanotechnology Approaches for Chloroplast Biotechnology Advancements. Front Plant Sci. 2021;12:691295. PubMed, PubMed, CrossRef
  51. Hu Z, Zhao C, Li Q, Feng Y, Zhang X, Lu Y, Ying R, Yin A, Ji W. Heavy metals can affect plant morphology and limit plant growth and photosynthesis processes. Agronomy. 2023;13(10):2601. CrossRef
  52. Yang Y, Zhang L, Huang X, Zhou Y, Quan Q, Li Y, Zhu X. Response of photosynthesis to different concentrations of heavy metals in Davidia involucrata. PLoS One. 2020;15(3):e0228563. PubMed, PubMed, CrossRef
  53. Leonelli L, Erickson E, Lyska D, Niyogi KK. Transient expression in Nicotiana benthamiana for rapid functional analysis of genes involved in non-photochemical quenching and carotenoid biosynthesis. Plant J. 2016;88(3):375-386. PubMed, PubMed, CrossRef
  54. Taylor SH, Long SP. Slow induction of photosynthesis on shade to sun transitions in wheat may cost at least 21% of productivity. Philos Trans R Soc Lond B Biol Sci. 2017;372(1730):20160543. PubMed, PubMed, CrossRef
  55. Ashraf M, Harris PJ. Photosynthesis under stressful environments: An overview. Photosynthetica. 2013;51(2):163-190. CrossRef
  56.  Romanenko KO, Babenko LM, Smirnov OE, Kosakivska IV. Antioxidant protection system and photosynthetic pigment composition in Secale cereale subjected to short-term temperature stresses. Open Agric J. 2022;16(Suppl-1, M3):e187433152206273. CrossRef
  57.  Smirnov O, Karpets LА, Zinchenko A, Kovalenko M, Belava V, Taran N. Changes of morphofunctional traits of Triticum aestivum and Triticum dicoccum seedlings caused by polyethylene glycol-modeling drought. J Central Eur Agric. 2020;21(2): 268-274. CrossRef
  58.  Maoka T. Carotenoids as natural functional pigments. J Nat Med. 2020;74(1):1-16. PubMed, PubMed, CrossRef
  59. Young AJ. The photoprotective role of carotenoids in higher plants. Physiol Plant. 1991;83(4):702-708. CrossRef
  60. Sun T, Rao S, Zhou X, Li L. Plant carotenoids: recent advances and future perspectives. Mol Hortic. 2022;2(1):3. PubMed, PubMed, CrossRef
  61. Horton P. Prospects for crop improvement through the genetic manipulation of photosynthesis: morphological and biochemical aspects of light capture. J Exp Bot. 2000;51(Suppl 1):475-485. PubMed, CrossRef
  62. Horton P, Johnson MP, Perez-Bueno ML, Kiss AZ, Ruban AV. Photosynthetic acclimation: does the dynamic structure and macro-organisation of photosystem II in higher plant grana membranes regulate light harvesting states? FEBS J. 2008;275(6):1069-1079. PubMed, CrossRef
  63. Souahi H. Impact of lead on the amount of chlorophyll and carotenoids in the leaves of Triticum durum and T. aestivum, Hordeum vulgare and Avena sativa. Biosyst Divers. 2021;29(3):207-210. CrossRef
  64. Barrera G, Pizzimenti S, Daga M, Dianzani C, Arcaro A, Cetrangolo GP, Giordano G, Cucci MA, Graf M, Gentile F. Lipid Peroxidation-Derived Aldehydes, 4-Hydroxynonenal and Malondialdehyde in Aging-Related Disorders. Antioxidants (Basel). 2018;7(8):102. PubMed, PubMed, CrossRef
  65. He Y, Wei HM, Liu SJ, Xu YC, Zhu ZY, Yan H, Li JX, Tian ZH. Growth response of Oryza sativa seedlings to graphene oxide and its variability among genotypes. Biol Plant. 2021;65:39-46. CrossRef
  66. Cheng F, Liu YF, Lu GY, Zhang XK, Xie LL, Yuan CF, Xu BB. Graphene oxide modulates root growth of Brassica napus L. and regulates ABA and IAA concentration. J Plant Physiol. 2016;193:57-63. PubMed, CrossRef
  67. Zhang P, Guo Z, Luo W, Monikh FA, Xie C, Valsami-Jones E, Lynch I, Zhang Z. Graphene Oxide-Induced pH Alteration, Iron Overload, and Subsequent Oxidative Damage in Rice (Oryza sativa L.): A New Mechanism of Nanomaterial Phytotoxicity. Environ Sci Technol. 2020;54(6):3181-3190. PubMed, CrossRef
  68. González-Gordo S, Rodríguez-Ruiz M, Palma JM, Corpas FJ. Comparative Analysis of Catalase Activity in Plants: Spectrophotometry and Native PAGE Approaches. Methods Mol Biol. 2024;2798:213-221. PubMed, CrossRef
  69. Hegedüs A, Erdei S, Horváth G. Comparative studies of H(2)O(2) detoxifying enzymes in green and greening barley seedlings under cadmium stress. Plant Sci. 2001;160(6):1085-1093. PubMed, CrossRef
  70. Siddiqui MH, Al-Khaishany MY, Al-Qutami MA, Al-Whaibi MH, Grover A, Ali HM, Al-Wahibi MS. Morphological and physiological characterization of different genotypes of faba bean under heat stress. Saudi J Biol Sci. 2015;22(5):656-663. PubMed, PubMed, CrossRef
  71. Kovacic P, Somanathan R. Biomechanisms of nanoparticles (toxicants, antioxidants and therapeutics): electron transfer and reactive oxygen species. J Nanosci Nanotechnol. 2010;10(12):7919-7930. PubMed, CrossRef
  72. Sairam RK, Rao KV, Srivastava GC. Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Sci. 2002;163(5):1037-1046. CrossRef
  73. Chen D, Mubeen B, Hasnain A, Rizwan M, Adrees M, Naqvi SAH, Iqbal S, Kamran M, El-Sabrout AM, Elansary HO, Mahmoud EA, Alaklabi A, Sathish M, Din GMU. Corrigendum: Role of Promising Secondary Metabolites to Confer Resistance Against Environmental Stresses in Crop Plants: Current Scenario and Future Perspectives. Front Plant Sci. 2022;13:950612. PubMed, PubMed, CrossRef
  74. Muhammad M, Basit A, Wahab A, Li WJ, Shah ST, Mohamed HI. Response mechanism of plant stresses to secondary metabolites production. In: Fungal Secondary Metabolites. Elsevier, 2024. P. 469-492. CrossRef
  75. Shafiq F, Iqbal M, Ali M, Ashraf MA. Fullerenol regulates oxidative stress and tissue ionic homeostasis in spring wheat to improve net-primary productivity under salt-stress. Ecotoxicol Environ Saf. 2021;211:111901. PubMed, CrossRef
  76. Liu F, Xiong F, Fan Y, Li J, Wang H, Xing G, Yan F, Tai F, He R. Facile and scalable fabrication engineering of fullerenol nanoparticles by improved alkaline-oxidation approach and its antioxidant potential in maize. J Nanopart Res. 2016;18:338. CrossRef
  77. Borišev M, Borišev I, Župunski M, Arsenov D, Pajević S, Ćurčić Ž, Vasin J, Djordjevic A. Drought Impact Is Alleviated in Sugar Beets (Beta vulgaris L.) by Foliar Application of Fullerenol Nanoparticles. PLoS One. 2016;11(11):e0166248. PubMed, PubMed, CrossRef
  78. Zhao L, Zhang H, Wang J, Tian L, Li F, Liu S, Peralta-Videa JR, Gardea-Torresdey JL, White JC, Huang Y, Keller A, Ji R. C60 Fullerols Enhance Copper Toxicity and Alter the Leaf Metabolite and Protein Profile in Cucumber. Environ Sci Technol. 2019;53(4):2171-2180. PubMed, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.