Ukr.Biochem.J. 2025; Volume 97, Issue 2, Mar-Apr, pp. 90-104
doi: https://doi.org/10.15407/ubj97.02.090
Physiological and biochemical parameters of winter wheat Triticum aestivum L. plants after seed treatment with fullerene C(60)
S. Prylutska1*, T. Tkachenko1, M. Petrovsky2
1National University of Life and Environmental Sciences of Ukraine, Kyiv;
2Taras Shevchenko National University of Kyiv, Ukraine.
*e-mail: psvit_1977@ukr.net
Received: 21 February 2025; Revised: 25 March 2025;
Accepted: 25 April 2025; Available on-line: 12 May 2025
Extreme climatic conditions, pests, diseases and environmental pollution significantly impact the cultivation of agricultural products and the quality of plant raw materials. It is assumed that nanostructured carbon materials, particularly fullerene C60, due to antioxidant, antiviral, and antibacterial properties can be used to prevent these effects. This study aimed to evaluate the effect of pre-sowing treatment of wheat seeds with fullerene C60 on the state of plants 14 days after germination. The seeds of the winter wheat Triticum aestivum L. of the Patras and Akter varieties were treated with a colloidal solution of fullerene C60 (0.1-1.0 µg/ml) for 3 h. Biomorphometric parameters, photosynthetic pigments, phenolic compounds, MDA content and catalase activity were assessed using standard techniques. It was shown that seeds treatment with fullerene C60 was followed by the greater increase of both the fresh weight of Akter plants and shoot length of Patras plants as compared to untreated controls. A dose-dependent effect of fullerene C60 on the physiological and biochemical parameters of the plants was revealed. Photosynthetic activity in plants of both wheat varieties was enhanced after seed treatment with C60 in low (0.1-0.2 µg/ml) concentrations as evidenced by the increased content of chlorophylls a, while at high (0.5-1.0 µg/ml) C60 concentrations it decreased against the background of increased carotenoids content. The enhancement of antioxidant defense induced by C60 treatment at concentrations of 0.5-1.0 µg/ml was observed, as indicated by an increase in the content of phenolic compounds and activation of catalase. The positive effect of wheat seeds treatment with fullerene C60 indicates the potential use of carbon nanoparticles in agrobiotechnologies to improve plant growth and stress resistance.
Keywords: carotenoids, catalase, chlorophylls, fullerene C(60), MDA, phenolic compounds, seed treatment, wheat germination
References:
- Sadak MS. Impact of silver nanoparticles on plant growth, some biochemical aspects, and yield of fenugreek plant (Trigonella foenum-graecum). Bull Nat Res Cent. 2019;43(1):38. CrossRef
- Khan ST, Adil SF, Shaik MR, Alkhathlan HZ, Khan M, Khan M. Engineered Nanomaterials in Soil: Their Impact on Soil Microbiome and Plant Health. Plants (Basel). 2021;11(1):109. PubMed, PubMed, CrossRef
- Deng Y, White JC, Xing B. Interactions between engineered nanomaterials and agricultural crops: Implications for food safety. J Zhejiang Univ Sci A. 2014;15(8):552-572. CrossRef
- Sharma MMM, Kapoor D, Loyal A, Kumar R, Sharma P, Husen A. Positive and Negative Impact of Carbon-Based Nanomaterials on the Plant Growth Performance. In: Husen A. (eds). Emerging Carbon Nanomaterials for Sustainable Agricultural Practices. Smart Nanomaterials Technology. Springer, Singapore, 2025. P. 63-83. CrossRef
- Tariq Z, Fatima A, Khurram S, Haider Z, Hassan S, Hussain MI, Anjum S.Influence of Carbon-Based Nanomaterials on Plant Cell Toxicity, Nutritional, and Active Compound Accumulation. In: Husen A. (eds). Emerging Carbon Nanomaterials for Sustainable Agricultural Practices. Smart Nanomaterials Technology. Springer, Singapore, 2025. P. 149-180. CrossRef
- Chaachouay N, Zidane L, Husen A. Carbon Nanomaterials for Healthier Crop Plants Growth and Enhanced Yield. In: Husen, A. (eds). Emerging Carbon Nanomaterials for Sustainable Agricultural Practices. Smart Nanomaterials Technology. Springer, 2025. P. 31-46. CrossRef
- Lin S, Reppert J, Hu Q, Hudson JS, Reid ML, Ratnikova TA, Rao AM, Luo H, Ke PC. Uptake, translocation, and transmission of carbon nanomaterials in rice plants. Small. 2009;5(10):1128-1132. PubMed, CrossRef
- De La Torre-Roche R, Hawthorne J, Deng Y, Xing B, Cai W, Newman LA, Wang C, Ma X, White JC. Fullerene-enhanced accumulation of p,p’-DDE in agricultural crop species. Environ Sci Technol. 2012;46(17):9315-9323. PubMed, CrossRef
- Avanasi R, Jackson WA, Sherwin B, Mudge JF, Anderson TA. C60 fullerene soil sorption, biodegradation, and plant uptake. Environ Sci Technol. 2014;48(5):2792-2797. PubMed, CrossRef
- Liu Q, Chen B, Wang Q, Shi X, Xiao Z, Lin J, Fang X. Carbon nanotubes as molecular transporters for walled plant cells. Nano Lett. 2009;9(3):1007-1010. PubMed, CrossRef
- Serag MF, Kaji N, Habuchi S, Bianco A, Baba Y. Nanobiotechnology meets plant cell biology: carbon nanotubes as organelle targeting nanocarriers. RSC Advs. 2013;3(15):4856-4862. CrossRef
- Giraldo JP, Landry MP, Faltermeier SM, McNicholas TP, Iverson NM, Boghossian AA, Reuel NF, Hilmer AJ, Sen F, Brew JA, Strano MS. Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nat Mater. 2014;13(4):400-408. PubMed, CrossRef
- Velikova V, Petrova N, Kovács L, Petrova A, Koleva D, Tsonev T, Taneva S, Petrov P, Krumova S. Single-Walled Carbon Nanotubes Modify Leaf Micromorphology, Chloroplast Ultrastructure and Photosynthetic Activity of Pea Plants. Int J Mol Sci. 2021;22(9):4878. PubMed, PubMed, CrossRef
- Sigala-Aguilar NA, López MG, Fernández-Luqueño F. Carbon-based nanomaterials as inducers of biocompounds in plants: Potential risks and perspectives. Plant Physiol Biochem. 2024;212:108753. PubMed, CrossRef
- Nokandeh S, Ramezani M, Gerami M. The physiological and biochemical responses to engineered green graphene/metal nanocomposites in Stevia rebaudiana. J Plant Biochem Biotechnol. 2021;30:579-585. CrossRef
- McGehee DL, Lahiani MH, Irin F, Green MJ, Khodakovskaya MV. Multiwalled Carbon Nanotubes Dramatically Affect the Fruit Metabolome of Exposed Tomato Plants. ACS Appl Mater Interfaces. 2017;9(38):32430-32435. PubMed, CrossRef
- Dumanović J, Nepovimova E, Natić M, Kuča K, Jaćević V. The Significance of Reactive Oxygen Species and Antioxidant Defense System in Plants: A Concise Overview. Front Plant Sci. 2021;11:552969. PubMed, PubMed, CrossRef
- Fatemi F, Abdollahi MR, Mirzaie-Asl A, Dastan D, Papadopoulou K. Phytochemical, antioxidant, enzyme activity and antifungal properties of Satureja khuzistanica in vitro and in vivo explants stimulated by some chemical elicitors. Pharm Biol. 2020;58(1):286-296. PubMed, PubMed, CrossRef
- Sharifi P, Bidabadi SS, Zaid A, Abdel Latef AAH. Efficacy of multi-walled carbon nanotubes in regulating growth performance, total glutathione and redox state of Calendula officinalis L. cultivated on Pb and Cd polluted soil. Ecotoxicol Environ Saf. 2021;213:112051. PubMed, CrossRef
- 20. Xiong JL, Ma N. Transcriptomic and Metabolomic Analyses Reveal That Fullerol Improves Drought Tolerance in Brassica napus L. Int J Mol Sci. 2022;23(23):15304. PubMed, PubMed, CrossRef
- 21. Zhang X, Cao H, Wang H, Zhang R, Jia H, Huang J, Zhao J, Yao J. Effects of graphene on morphology, microstructure and transcriptomic profiling of Pinus tabuliformis Carr. roots. PLoS One. 2021;16(7):e0253812. PubMed, PubMed, CrossRef
- Hamdi H, De La Torre-Roche R, Hawthorne J, White JC. Impact of non-functionalized and amino-functionalized multiwall carbon nanotubes on pesticide uptake by lettuce (Lactuca sativa L.). Nanotoxicology. 2015;9(2):172-180. PubMed, CrossRef
- Khodakovskaya MV, de Silva K, Biris AS, Dervishi E, Villagarcia H. Carbon nanotubes induce growth enhancement of tobacco cells. ACS Nano. 2012;6(3):2128-2135. PubMed, CrossRef
- Lahiani MH, Dervishi E, Chen J, Nima Z, Gaume A, Biris AS, Khodakovskaya MV. Impact of carbon nanotube exposure to seeds of valuable crops. ACS Appl Mater Interfaces. 2013;5(16):7965-7973. PubMed, CrossRef
- Bianco A, Kostarelos K, Prato M. Applications of carbon nanotubes in drug delivery. Curr Opin Chem Biol. 2005;9(6):674-679. PubMed, CrossRef
- Torney F, Trewyn BG, Lin VS, Wang K. Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotechnol. 2007;2(5):295-300. PubMed, CrossRef
- Nima ZA, Lahiani MH, Watanabe F, Xu Y, Khodakovskaya MV, Biris AS. Plasmonically active nanorods for delivery of bio-active agents and high-sensitivity SERS detection in planta. RSC Adv. 2014; 4(110): 64985-64993. CrossRef
- Shen CX, Zhang QF, Li J, Bi FC, Yao N. Induction of programmed cell death in Arabidopsis and rice by single-wall carbon nanotubes. Am J Bot. 2010;97(10):1602-1609. PubMed, CrossRef
- Begum P, Ikhtiari R, Fugetsu B, Matsuoka M, Akasaka T, Watari F. Phytotoxicity of multi-walled carbon nanotubes assessed by selected plant species in the seedling stage. Appl Surf Sci. 2012;262:120-124. CrossRef
- Shvedova AA, Pietroiusti A, Fadeel B, Kagan VE. Mechanisms of carbon nanotube-induced toxicity: focus on oxidative stress. Toxicol Appl Pharmacol. 2012;261(2):121-133. PubMed, PubMed, CrossRef
- He A, Jiang J, Ding J, Sheng GD. Blocking effect of fullerene nanoparticles (nC60) on the plant cell structure and its phytotoxicity. Chemosphere. 2021;278:130474. PubMed, PubMed, CrossRef
- Schuetze C, Ritter U, Scharff P, Fernekorn U, Prylutska S, Bychko A, Rybalchenko V, Prylutskyy Yu. Interaction of N-fluorescein-5-isothiocyanate pyrrolidine-C60 with a bimolecular lipid model membrane. Mater Sci Eng C. 2011;31(5):1148-1150. CrossRef
- Prylutska S, Grynyuk I, Skaterna T, Horak I, Grebinyk A, Drobot L, Matyshevska O, Senenko A, Prylutskyy Y, Naumovets A, Ritter U, Frohme M. Toxicity of C60 fullerene-cisplatin nanocomplex against Lewis lung carcinoma cells. Arch Toxicol. 2019;93(5):1213-1226. PubMed, CrossRef
- Winter wheat Patras – DSV. Regime of access : https://www.dsv-ukraina.com.ua/sorte/664.
- Production of soil mixtures, substrates and fertilizers for indoor and garden plants. Regime of access : http://floriada.com.ua/g_universal.php.
- Lichtenthaler HK, Wellburn AR. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem Soc Trans. 1983;11(5):591-592. CrossRef
- Cakmak I, Horst WJ. Effect of aluminium on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max). Physiol Plant. 1991;83(3):463-468. CrossRef
- Heath RL, Packer L. Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys. 1968;125(1):189-198. PubMed, CrossRef
- Lucas BN, Dalla Nora, Boeira CP, Verruck S, da Rosa CS. Determination of total phenolic compounds in plant extracts via Folin-Ciocalteu’s method adapted to the usage of digital images. Food Sci Technol. 2022;42:e35122. CrossRef
- Luna CM, Pastori GM, Driscoll S, Groten K, Bernard S, Foyer CH. Drought controls on H2O2 accumulation, catalase (CAT) activity and CAT gene expression in wheat. J Exp Bot. 2005;56(411):417-423.PubMed, CrossRef
- Winter-hardy varieties of winter wheat. (n.d.). February 09, 2022. Regime of access: https://consumerhm.gov.ua/2966-zimostijki-sorti-ozimoji-pshenitsi.
- Wheat seeds Akter DSV-Ukraine. Regime of access: https://superagronom.com/nasinnya-pshenicya-ozima/akter-id9728.
- Al-Khayri JM, Rashmi R, Surya Ulhas R, Sudheer WN, Banadka A, Nagella P, Aldaej MI, Rezk AA, Shehata WF, Almaghasla MI. The Role of Nanoparticles in Response of Plants to Abiotic Stress at Physiological, Biochemical, and Molecular Levels. Plants (Basel). 2023;12(2):292. PubMed, PubMed, CrossRef
- Prylutska SV, Franskevych DV, Yemets AI. Cellular biological and molecular genetic effects of carbon nanomaterials in plants. Cytol Genet. 2022;56(4):351-360. CrossRef
- Begum P, Fugetsu B. Phytotoxicity of multi-walled carbon nanotubes on red spinach (Amaranthus tricolor L) and the role of ascorbic acid as an antioxidant. J Hazard Mater. 2012;243:212-222. PubMed, CrossRef
- Lahiani MH, Dervishi E, Ivanov I, Chen J, Khodakovskaya M. Comparative study of plant responses to carbon-based nanomaterials with different morphologies. Nanotechnology. 2016;27(26):265102. PubMed, CrossRef
- Khodakovskaya MV, Kim BS, Kim JN, Alimohammadi M, Dervishi E, Mustafa T, Cernigla CE. Carbon nanotubes as plant growth regulators: effects on tomato growth, reproductive system, and soil microbial community. Small. 2013;9(1):115-123. PubMed, CrossRef
- Buziashvili A, Prylutska S, Yemets A. Effect of fullerene C60 on tomato plants. Innov Biosyst Bioeng. 2024;8(4):13-22. CrossRef
- Li P, Xia Y, Song K, Liu D. The Impact of Nanomaterials on Photosynthesis and Antioxidant Mechanisms in Gramineae Plants: Research Progress and Future Prospects. Plants (Basel). 2024;13(7):984. PubMed, PubMed, CrossRef
- Newkirk GM, de Allende P, Jinkerson RE, Giraldo JP. Nanotechnology Approaches for Chloroplast Biotechnology Advancements. Front Plant Sci. 2021;12:691295. PubMed, PubMed, CrossRef
- Hu Z, Zhao C, Li Q, Feng Y, Zhang X, Lu Y, Ying R, Yin A, Ji W. Heavy metals can affect plant morphology and limit plant growth and photosynthesis processes. Agronomy. 2023;13(10):2601. CrossRef
- Yang Y, Zhang L, Huang X, Zhou Y, Quan Q, Li Y, Zhu X. Response of photosynthesis to different concentrations of heavy metals in Davidia involucrata. PLoS One. 2020;15(3):e0228563. PubMed, PubMed, CrossRef
- Leonelli L, Erickson E, Lyska D, Niyogi KK. Transient expression in Nicotiana benthamiana for rapid functional analysis of genes involved in non-photochemical quenching and carotenoid biosynthesis. Plant J. 2016;88(3):375-386. PubMed, PubMed, CrossRef
- Taylor SH, Long SP. Slow induction of photosynthesis on shade to sun transitions in wheat may cost at least 21% of productivity. Philos Trans R Soc Lond B Biol Sci. 2017;372(1730):20160543. PubMed, PubMed, CrossRef
- Ashraf M, Harris PJ. Photosynthesis under stressful environments: An overview. Photosynthetica. 2013;51(2):163-190. CrossRef
- Romanenko KO, Babenko LM, Smirnov OE, Kosakivska IV. Antioxidant protection system and photosynthetic pigment composition in Secale cereale subjected to short-term temperature stresses. Open Agric J. 2022;16(Suppl-1, M3):e187433152206273. CrossRef
- Smirnov O, Karpets LА, Zinchenko A, Kovalenko M, Belava V, Taran N. Changes of morphofunctional traits of Triticum aestivum and Triticum dicoccum seedlings caused by polyethylene glycol-modeling drought. J Central Eur Agric. 2020;21(2): 268-274. CrossRef
- Maoka T. Carotenoids as natural functional pigments. J Nat Med. 2020;74(1):1-16. PubMed, PubMed, CrossRef
- Young AJ. The photoprotective role of carotenoids in higher plants. Physiol Plant. 1991;83(4):702-708. CrossRef
- Sun T, Rao S, Zhou X, Li L. Plant carotenoids: recent advances and future perspectives. Mol Hortic. 2022;2(1):3. PubMed, PubMed, CrossRef
- Horton P. Prospects for crop improvement through the genetic manipulation of photosynthesis: morphological and biochemical aspects of light capture. J Exp Bot. 2000;51(Suppl 1):475-485. PubMed, CrossRef
- Horton P, Johnson MP, Perez-Bueno ML, Kiss AZ, Ruban AV. Photosynthetic acclimation: does the dynamic structure and macro-organisation of photosystem II in higher plant grana membranes regulate light harvesting states? FEBS J. 2008;275(6):1069-1079. PubMed, CrossRef
- Souahi H. Impact of lead on the amount of chlorophyll and carotenoids in the leaves of Triticum durum and T. aestivum, Hordeum vulgare and Avena sativa. Biosyst Divers. 2021;29(3):207-210. CrossRef
- Barrera G, Pizzimenti S, Daga M, Dianzani C, Arcaro A, Cetrangolo GP, Giordano G, Cucci MA, Graf M, Gentile F. Lipid Peroxidation-Derived Aldehydes, 4-Hydroxynonenal and Malondialdehyde in Aging-Related Disorders. Antioxidants (Basel). 2018;7(8):102. PubMed, PubMed, CrossRef
- He Y, Wei HM, Liu SJ, Xu YC, Zhu ZY, Yan H, Li JX, Tian ZH. Growth response of Oryza sativa seedlings to graphene oxide and its variability among genotypes. Biol Plant. 2021;65:39-46. CrossRef
- Cheng F, Liu YF, Lu GY, Zhang XK, Xie LL, Yuan CF, Xu BB. Graphene oxide modulates root growth of Brassica napus L. and regulates ABA and IAA concentration. J Plant Physiol. 2016;193:57-63. PubMed, CrossRef
- Zhang P, Guo Z, Luo W, Monikh FA, Xie C, Valsami-Jones E, Lynch I, Zhang Z. Graphene Oxide-Induced pH Alteration, Iron Overload, and Subsequent Oxidative Damage in Rice (Oryza sativa L.): A New Mechanism of Nanomaterial Phytotoxicity. Environ Sci Technol. 2020;54(6):3181-3190. PubMed, CrossRef
- González-Gordo S, Rodríguez-Ruiz M, Palma JM, Corpas FJ. Comparative Analysis of Catalase Activity in Plants: Spectrophotometry and Native PAGE Approaches. Methods Mol Biol. 2024;2798:213-221. PubMed, CrossRef
- Hegedüs A, Erdei S, Horváth G. Comparative studies of H(2)O(2) detoxifying enzymes in green and greening barley seedlings under cadmium stress. Plant Sci. 2001;160(6):1085-1093. PubMed, CrossRef
- Siddiqui MH, Al-Khaishany MY, Al-Qutami MA, Al-Whaibi MH, Grover A, Ali HM, Al-Wahibi MS. Morphological and physiological characterization of different genotypes of faba bean under heat stress. Saudi J Biol Sci. 2015;22(5):656-663. PubMed, PubMed, CrossRef
- Kovacic P, Somanathan R. Biomechanisms of nanoparticles (toxicants, antioxidants and therapeutics): electron transfer and reactive oxygen species. J Nanosci Nanotechnol. 2010;10(12):7919-7930. PubMed, CrossRef
- Sairam RK, Rao KV, Srivastava GC. Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Sci. 2002;163(5):1037-1046. CrossRef
- Chen D, Mubeen B, Hasnain A, Rizwan M, Adrees M, Naqvi SAH, Iqbal S, Kamran M, El-Sabrout AM, Elansary HO, Mahmoud EA, Alaklabi A, Sathish M, Din GMU. Corrigendum: Role of Promising Secondary Metabolites to Confer Resistance Against Environmental Stresses in Crop Plants: Current Scenario and Future Perspectives. Front Plant Sci. 2022;13:950612. PubMed, PubMed, CrossRef
- Muhammad M, Basit A, Wahab A, Li WJ, Shah ST, Mohamed HI. Response mechanism of plant stresses to secondary metabolites production. In: Fungal Secondary Metabolites. Elsevier, 2024. P. 469-492. CrossRef
- Shafiq F, Iqbal M, Ali M, Ashraf MA. Fullerenol regulates oxidative stress and tissue ionic homeostasis in spring wheat to improve net-primary productivity under salt-stress. Ecotoxicol Environ Saf. 2021;211:111901. PubMed, CrossRef
- Liu F, Xiong F, Fan Y, Li J, Wang H, Xing G, Yan F, Tai F, He R. Facile and scalable fabrication engineering of fullerenol nanoparticles by improved alkaline-oxidation approach and its antioxidant potential in maize. J Nanopart Res. 2016;18:338. CrossRef
- Borišev M, Borišev I, Župunski M, Arsenov D, Pajević S, Ćurčić Ž, Vasin J, Djordjevic A. Drought Impact Is Alleviated in Sugar Beets (Beta vulgaris L.) by Foliar Application of Fullerenol Nanoparticles. PLoS One. 2016;11(11):e0166248. PubMed, PubMed, CrossRef
- Zhao L, Zhang H, Wang J, Tian L, Li F, Liu S, Peralta-Videa JR, Gardea-Torresdey JL, White JC, Huang Y, Keller A, Ji R. C60 Fullerols Enhance Copper Toxicity and Alter the Leaf Metabolite and Protein Profile in Cucumber. Environ Sci Technol. 2019;53(4):2171-2180. PubMed, CrossRef
