Ukr.Biochem.J. 2025; Volume 97, Issue 4, Jul-Aug, pp. 84-93

doi: https://doi.org/10.15407/ubj97.04.084

In vivo, in vitro, and molecular docking study of rat pancreatic lipase inhibition using isopropyl salicylate

Noor M. Mahdi1, Sarah A. Younus2,
Abdallah F. Al-Burgus1, Omar Y. Al-Abbasy3*

1General Directorate of Education in Nineveh, Mosul, Iraq;
2Department of Chemistry and Biochemistry, College of Medicine,
University of Nineveh, Mosul, Iraq;
3Department of Chemistry, College of Education for Pure Science,
University of Mosul, Mosul, Iraq;
*e-mail: chem.omar1978@uomosul.edu.iq

Received: 30 April 2025; Revised: 11 July 2025;
Accepted: 12 September 2025; Available on-line: 17 September 2025

Pancreatic lipase (PL) represents a significant treatment target that has been the focus of research on anti-obesity medications. Orlistat is the only regularly used prescription that has been approved for long-term use. The discovery of new compounds for anti-obesity treatment based on PL inhibition can be achieved, in particular, by structure-based virtual screening with docking software. The aim of this research was to study isopropyl salicylate (IPS) anti-hyperlipidemic activity and inhibitory effect on rat pancreatic PL in comparison with orlistat. Wistar rats were divided into four groups of 8 animals each: control; fed with a high-fat diet (HFD) for 12 weeks to produce hyperlipidemia; fed with HFD and Orlistat (10 mg/kg BW daily); fed with HFD and IPS (10.81 mg/kg BW daily). It was shown that BW gain and lipase activity in the plasma of the high-fat diet rats treated with either orlistat or isopropyl salicylate were reduced considerably compared with untreated rats. The pancreatic lipase was partially purified from the plasma of obese rats, and a kinetic study of the IPS effect identified a competitive inhibition mode with an assessed Ki of 30.53 mM. An in silico study of the interaction between IPS and rat pancreatic lipase-related protein 2 (PDB ID: 1BU8) was conducted. The binding energy value ΔG for the IPS-protein complex at the enzyme’s active site was found to be -5.4 kcal/mol, while that for the orlistat-protein complex was -4.4 kcal/mol, indicating the stronger interaction of the enzyme with isopropyl salicylate than with orlistat.

Keywords: , , , , , ,


References:

  1. Prendergast H, Tyo C, Colbert C, Kelley M, Pobee R. Medical complications of obesity: heightened importance in a COVID era. Int J Emerg Med. 2022;15(1):29. PubMed, PubMed, CrossRef
  2. Alrushdi FMM, Al-Abaasy OYM, Al-Saffar RN, Abbood HY, Al-Hamairy AK, Saleh MY, Abdelzaher H, Abdelzaher MA, Kenawy MA. In vitro: inhibition of partially purified pancreatic ovine lipase by willow bark extracts. J Biosci Appl Res. 2025;11(1):168-179. CrossRef
  3. Powell-Wiley TM, Poirier P, Burke LE, Després JP, Gordon-Larsen P, Lavie CJ, Lear SA, Ndumele CE, Neeland IJ, Sanders P, St-Onge MP. Obesity and Cardiovascular Disease: A Scientific Statement From the American Heart Association. Circulation. 2021;143(21):e984-e1010. PubMed, PubMed, CrossRef
  4. Rashan AI, Altaee RT, Salh FS, AL-Abbasy OY, Al-Lehebe N. The role of polyamines in plants: A review. Plant Sci Today. 2023;10(sp2):164-171. CrossRef
  5. Berger NA. Obesity and cancer pathogenesis. Ann N Y Acad Sci. 2014;1311(1):57-76. PubMed, PubMed, CrossRef
  6. Gluba-Brzózka A, Rysz J, Ławiński J, Franczyk B. Renal Cell Cancer and Obesity. Int J Mol Sci. 2022;23(6):3404. PubMed, PubMed, CrossRef
  7. Eibl G, Rozengurt E. Obesity and Pancreatic Cancer: Insight into Mechanisms. Cancers (Basel). 2021;13(20):5067. PubMed, PubMed, CrossRef
  8. Devericks EN, Carson MS, McCullough LE, Coleman MF, Hursting SD. The obesity-breast cancer link: a multidisciplinary perspective. Cancer Metastasis Rev. 2022;41(3):607-625. PubMed, PubMed, CrossRef
  9. Müller TD, Blüher M, Tschöp MH, DiMarchi RD. Anti-obesity drug discovery: advances and challenges. Nat Rev Drug Discov. 2022;21(3):201-223. PubMed, PubMed, CrossRef
  10. Mhatre SV, Bhagit AA, Yadav RP. Pancreatic lipase inhibitor from food plant: Potential molecule for development of safe anti-obesity drug. MGM J Med Sci. 2016;3(1):34-41. CrossRef
  11. Alabbas K, Salih OA, Al-Abbasy OY. Isolation, purification, and characterization of pecan nut lipase and studying its affinity towards pomegranate extracts and 1, 4-Diacetoxybenzene. Iraqi J Sci. 2022,63(3):908-922. CrossRef
  12. Lim SY, Steiner JM, Cridge H. Lipases: it’s not just pancreatic lipase! Am J Vet Res. 2022;83(8):ajvr.22.03.0048. PubMed, CrossRef
  13. Chakhtoura M, Haber R, Ghezzawi M, Rhayem C, Tcheroyan R, Mantzoros CS. Pharmacotherapy of obesity: an update on the available medications and drugs under investigation. EClinicalMedicine. 2023;58:101882. PubMed, PubMedCentral,CrossRef
  14. Liu TT, Liu XT, Chen QX, Shi Y. Lipase Inhibitors for Obesity: A Review. Biomed Pharmacother. 2020;128:110314. PubMed, CrossRef
  15. Tuzimski T, Petruczynik A. New trends in the practical use of isoquinoline alkaloids as potential drugs applicated in infectious and non-infectious diseases. Biomed Pharmacother. 2023;168:115704. PubMed, CrossRef
  16. Chanoine JP, Hampl S, Jensen C, Boldrin M, Hauptman J. Effect of orlistat on weight and body composition in obese adolescents: a randomized controlled trial. JAMA. 20055;293(23):2873-2883. PubMed, CrossRef
  17. Chauhan D, George G, Sridhar SNC, Bhatia R, Paul AT, Monga V. Design, synthesis, biological evaluation, and molecular modeling studies of rhodanine derivatives as pancreatic lipase inhibitors. Arch Pharm (Weinheim). 2019;352(10):e1900029. PubMed, CrossRef
  18. Thi Vo CV, Thanh Nguyen T, Ngoc Dang T, Quoc Dao M, Thao Vo V, Thi Tran O, Thanh Vu L, Tran TD. Design, synthesis, biological evaluation and molecular docking of alkoxyaurones as potent pancreatic lipase inhibitors. Bioorg Med Chem Lett. 2024;98:129574. PubMed, CrossRef
  19. Rainsford KD. Aspirin and related drugs. 2004: CRC Press, 2004. 800 p. CrossRef
  20. Luo J, Liao S, Zhang B, Lin X. Study on new technology of synthesizing isopropyl salicylate. Modern Chem Industry. 2000;20(9):42-44.
  21. Najjar A, Grégoire S, Nicol B, Natsch A, Golbamaki N, Boisleve F, Irizar A, Wall B, Swinscoe A, Masini-Etévé V, Joshi K, Api AM, Griem P, Reis A, Hewitt NJ, Cardamone E. Grouping of chemicals for safety assessment: the importance of toxicokinetic properties of salicylate esters. Arch Toxicol. 2025;99(3):995-1010. PubMed, PubMedCentral, CrossRef
  22. Rayalam S, Della-Fera MA, Baile CA. Phytochemicals and regulation of the adipocyte life cycle. J Nutr Biochem. 2008;19(11):717-726. PubMed, CrossRef
  23. Wichapong K, Rohe A, Platzer C, Slynko I, Erdmann F, Schmidt M, Sippl W. Application of docking and QM/MM-GBSA rescoring to screen for novel Myt1 kinase inhibitors. J Chem Inf Model. 2014;54(3):881-893. PubMed, CrossRef
  24. Al-Burgus AF, Ali OT, Al-Abbasy OY. New spiro-heterocyclic coumarin derivatives as antibacterial agents: design, synthesis and molecular docking. Chimica Techno Acta. 2024;11(3):202411308. CrossRef
  25. Smine S. Obesity induced by a highly fat diet (HFD) and protecting effect of a grape polyphenolic extract (GSSE) : a proteomic approach. Normandie Université; Université de Tunis El Manar, 2017.
  26. Wahabi S, Rtibi K, Atouani A, Sebai H. Anti-Obesity Actions of Two Separated Aqueous Extracts From Arbutus (Arbutus unedo) and Hawthorn (Crataegus monogyna) Fruits Against High-Fat Diet in Rats via Potent Antioxidant Target. Dose Response. 2023;21(2):15593258231179904. PubMed, PubMed, CrossRef
  27. Zaitone SA, Essawy S. Addition of a low dose of rimonabant to orlistat therapy decreases weight gain and reduces adiposity in dietary obese rats. Clin Exp Pharmacol Physiol. 2012;39(6):551-559. PubMed, CrossRef
  28. 28. Novelli EL, Diniz YS, Galhardi CM, Ebaid GM, Rodrigues HG, Mani F, Fernandes AA, Cicogna AC, Novelli Filho JL. Anthropometrical parameters and markers of obesity in rats. Lab Anim. 2007;41(1):111-119. PubMed, CrossRef
  29. Robyt JF, White BJ. Biochemical techniques: theory and practice. Monterey, Calif.: Brooks/Cole Pub. Co., 1987. 407 p.
  30. Lee D, Koh Y, Kim K, Kim B, Choi H, Kim D, Suhartono MT, Pyun Y. Isolation and characterization of a thermophilic lipase from bacillus thermoleovorans ID-1. FEMS Microbiol Lett. 1999;179(2):393-400. PubMed, CrossRef
  31. Al-Abbasy OY, Ali WI, Younis SA. Study on inhibitory effect of Rosmarinus officinalis L extracts and Quercitine on partially purified cow’s brain polyamine oxidase. Biochem Cell Arch. 2020;20(2):5617-5625.
  32. Taqi HM, Al-Shahery YJ, Al-Abbasy OY. Innovative Isolation of Nostoc minutum Protein for Antibacterial Applications. Egypt J Aquatic Biol Fisheries. 2024;28(6):2055-2071. CrossRef
  33. Rashan AI, Al-Abbasy OY. Inhibitory and kinetic study of partially purified tyrosinase from Iraqi quince fruit. Plant Cell Biotech Mol Biol. 2021;22(23-24):1-14.
  34. Hevener KE, Zhao W, Ball DM, Babaoglu K, Qi J, White SW, Lee RE. Validation of molecular docking programs for virtual screening against dihydropteroate synthase. J Chem Inf Model. 2009;49(2):444-460. PubMed, PubMed, CrossRef
  35. Sadoon AM, Saeed NHM. Theoretical prediction of rate constant of some N-phenylacetamide substitutes reactions with chloramine-T using ab-initio and statistical calculations. AIP Conf Proc. 2021;2371:120003. CrossRef
  36. Al-Burgus AF, Thanoon-Ali O, and AL-Abbasy OY. Design, synthesis and molecular docking of new spiro heterocyclic coumarin as antibacterial agents. Rev Roum Chim. 2024;69(7-8):399-404. CrossRef
  37. Claycomb WC, Kilsheimer GS. Purification and properties of a lipase from rat liver mitochondria. J Biol Chem. 1971;246(23):7139-7143. PubMed, CrossRef
  38. Phan CT, Tso P. Intestinal lipid absorption and transport. Front Biosci. 2001;6(3):D299-D319. PubMed, CrossRef
  39. Woolley P, Petersen SB. Lipases: their structure, biochemistry and application. Cambridge University Press, 1994. 377 p.
  40. Iizuka K, Higurashi H, Fujimoto J, Hayashi Y, Yamamoto K, Hiura H. Purification of human pancreatic lipase and the influence of bicarbonate on lipase activity. Ann Clin Biochem. 1991;28(Pt 4):373-378. PubMed, CrossRef
  41. Zhao HL, Kim YS. Determination of the kinetic properties of platycodin D for the inhibition of pancreatic lipase using a 1,2-diglyceride-based colorimetric assay. Arch Pharm Res. 2004;27(10):1048-1052. PubMed, CrossRef
  42. Ninomiya K, Matsuda H, Shimoda H, Nishida N, Kasajima N, Yoshino T, Morikawa T, Yoshikawa M. Carnosic acid, a new class of lipid absorption inhibitor from sage. Bioorg Med Chem Lett. 2004;14(8):1943-1946. PubMed, CrossRef
  43. Won SR, Kim SK, Kim YM, Lee PH, Ryu JH, Kim JW, Rhee HI. Licochalcone A: A lipase inhibitor from the roots of Glycyrrhiza uralensis. Food Res Int. 2007;40(8):1046-1050. CrossRef
  44. Rajan L, Das N, Chakkyarath V, Natarajan J, Palaniswamy D, Shaw S, Kumar Mishra S. Pancreatic lipase related protein 1 as a potential target in triglyceride breakdown: A molecular docking studies with in vitro appraisal. Results Chem. 2023;5:100960. CrossRef
  45. Martinez-Gonzalez AI, Alvarez-Parrilla E, Díaz-Sánchez ÁG, de la Rosa LA, Núñez-Gastélum JA, Vazquez-Flores AA, Gonzalez-Aguilar GA. In vitro Inhibition of Pancreatic Lipase by Polyphenols: A Kinetic, Fluorescence Spectroscopy and Molecular Docking Study. Food Technol Biotechnol. 2017;55(4):519-530. PubMed, PubMed, CrossRef
  46. Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31(2):455-461. PubMed, PubMed, CrossRef
  47. Hadváry P, Sidler W, Meister W, Vetter W, Wolfer H. The lipase inhibitor tetrahydrolipstatin binds covalently to the putative active site serine of pancreatic lipase. J Biol Chem. 1991;266(4):2021-2027. PubMed, CrossRef
  48. Egloff MP, Marguet F, Buono G, Verger R, Cambillau C, van Tilbeurgh H. The 2.46 A resolution structure of the pancreatic lipase-colipase complex inhibited by a C11 alkyl phosphonate. Biochemistry. 1995;34(9):2751-2762. PubMed, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.