Ukr.Biochem.J. 2025; Volume 97, Issue 4, Jul-Aug, pp. 52-65

doi: https://doi.org/10.15407/ubj97.04.052

Thiacalix[4]arene С-1193 – a promising inhibitor of the sodium pump in the uterine smooth muscle cells

O. V. Maliuk1*, T. O. Veklich1, O. V. Tsymbalyuk2, O. V. Bevza1,
S. O. Cherenok3, A. I. Selikhova3, V. I. Kalchenko3, S. O. Kosterin1

1Palladin Institute of Biochemistry, National Academy of Sciences
of Ukraine, Kyiv, Ukraine;
*e-mail: sanya2000ua@gmail.com;
2Educational and Scientific Institute of High Technologies,
Taras Shevchenko National University of Kyiv, Kyiv, Ukraine;
3Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine

Received: 29 May 2025; Revised: 18 July 2025;
Accepted: 12 September 2025; Available on-line: 17 September2025

Thiacalix[4]arene C-1193 (25,27-dibutoxythiacalix[4]arene-bis-hydroxymethylphosphonic acid) was shown to inhibit the activity of Na+,K+-ATPase with a high efficiency (І0.5 = 42.1 ± 0.6 nM) with no effect on the activity of Mg2+-ATPase, Са2+-ATPase and Са2+,Mg2+-ATPase in the plasma membrane fraction of rat uterine smooth muscle cells. The kinetic regularities of the C-1193 inhibitory effect on Na+,K+-ATPase activity were investigated. It was demonstrated that C-1193 increased the enzyme activation constant by Na+ but not by K+ ions. The contractile activity of the rat uterine horns was investigated by tenzometric methods with the use of longitudinal uterine smooth muscle strips with intact endometrium. С-1193 induced a considerable increase in the amplitude of the acetylcholine-induced contractions as well as the maximal velocity of the contraction and relaxation phases. No effect of С-1193 on contractive activity induced by the selective agonist of М3-cholinoreceptors cevimeline was observed. The results of computer simulation showed that С-1193inhibitory effect must be related to the cooperative action of methylene bisphosphonate fragments on the upper rim of the calixarene platform, and the linker sulfur atoms of calixarene “cup” on the Na+,K+-ATPase macrostructure.

Keywords: , , , , , , ,


References:

  1. Staehr C, Aalkjaer C, Matchkov VV. The vascular Na,K-ATPase: clinical implications in stroke, migraine, and hypertension. Clin Sci (Lond). 2023;137(20):1595-1618. PubMed, PubMed, CrossRef
  2. Fedosova NU, Habeck M, Nissen P. Structure and Function of Na,K-ATPase-The Sodium-Potassium Pump. Compr Physiol. 2021;12(1):2659-2679. PubMed, CrossRef
  3. Pirkmajer S, Chibalin AV. Hormonal regulation of Na+-K+-ATPase from the evolutionary perspective. Curr Top Membr. 2019;83:315-351. PubMed, CrossRef
  4. Contreras RG, Torres-Carrillo A, Flores-Maldonado C, Shoshani L, Ponce A. Na+/K+-ATPase: More than an Electrogenic Pump. Int J Mol Sci. 2024;25(11):6122. PubMed, PubMed, CrossRef
  5. Obradovic M, Sudar-Milovanovic E, Gluvic Z, Banjac K, Rizzo M, Isenovic ER. The Na+/K+-ATPase: A potential therapeutic target in cardiometabolic diseases. Front Endocrinol (Lausanne). 2023;14:1150171. PubMed, PubMed, CrossRef
  6. Coleman A, Jebors S, Cecillon S, Perret P, Garin D, Marti-Battle D, Moulin M. Toxicity and biodistribution of para-sulfonato-calix[4]arene in mice. New J Chem. 2008;32(5):780-782. CrossRef
  7. Da Silva E, Lazar AN, Coleman AW. Biopharmaceutical applications of calixarenes. J Drug Deliv Sci Technol. 2004;14(1):3-20. CrossRef
  8. Paclet MH, Rousseau CF, Yannick C, Morel F, Coleman AW. An Absence of Non-specific Immune Response towards para-Sulphonato-calix[n]arenas. J Incl Phenom Macrocycl Chem. 2006;55(3-4):353-357. CrossRef
  9. Grare M, Mourer M, Fontanay S, Regnouf-de-Vains JB, Finance C, Duval RE. In vitro activity of para-guanidinoethylcalix[4]arene against susceptible and antibiotic-resistant Gram-negative and Gram-positive bacteria. J Antimicrob Chemother. 2007;60(3):575-581. PubMed, CrossRef
  10. Kosterin SO, Kalchenko VI, Veklich TO, Babich LG, Shlykov SG. Calix[4]arenes as modulators of ATP-hydrolase systems of smooth muscle cells. Kyiv: Naukova Dumka, 2019. 266 p.
  11. Perret F, Lazar AN, Coleman AW. Biochemistry of the para-sulfonato-calix[n]arenes. Chem Commun (Camb). 2006;(23):2425-2438. PubMed, CrossRef
  12. Veklich TO, Cherenok SO, Tsymbaluk OV, Shkrabak ОA, Karakhim SO, Selihova AI, Kalchenko VІ, Kosterin SO. A new affine inhibitor of sodium pump thiacalix[4]arene С-1193 increases the intracellular concentration of Ca ions and modifies myometrium contractility. Ukr Biochem J. 2023;95(5):5-21. CrossRef
  13. Veklich ТО, Kosterin SO. Comparative study of properties of Na+, K+-ATPase and Mg2+-ATPase of the myometrium plasma membrane. Ukr Biokhim Zhurn. 2005;77(2):66-75. (In Ukrainian). PubMed
  14. Kondratiuk TP, Bychenok SF, Prishchepa LA, Babich LG, Kurskiy MD [Isolation and characteristics of the plasma membrane fraction from the swine myometrium. Ukr Biokhim Zhurn. 1986;58(4):50-56. (In Russian). PubMed
  15. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72(1-2):248-254. PubMed, CrossRef
  16. Wang H, Haas M, Liang M, Cai T, Tian J, Li S, Xie Z. Ouabain assembles signaling cascades through the caveolar Na+/K+-ATPase. J Biol Chem. 2004;279(17):17250-17259. PubMed, CrossRef
  17. Rathbun WB, Betlach MV. Estimation of enzymically produced orthophosphate in the presence of cysteine and adenosine triphosphate. Anal Biochem. 1969;28(1):436-445. PubMed, CrossRef
  18. Burdyga V, Kosterin SA. Kinetic analysis of smooth muscle relaxation. Gen Physiol Biophys. 1991;10(6):589-598. PubMed
  19. Storn R, Price K. Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces. J Glob Optim. 1997;11:341-359. CrossRef
  20.  Li L, Jose J, Xiang Y, Kuhn RJ, Rossmann MG. Structural changes of envelope proteins during alphavirus fusion. Nature. 2010;468(7324):705-708. PubMed, PubMed, CrossRef
  21. Askari A. The other functions of the sodium pump. Cell Calcium. 2019;84:102105. PubMed, CrossRef
  22. Abdalla FM, Maróstica E, Picarelli ZP, Abreu LC, Avellar MC, Porto CS. Effect of estrogen on muscarinic acetylcholine receptor expression in rat myometrium. Mol Cell Endocrinol. 2004;213(2):139-148. PubMed, CrossRef
  23. Abdalla FM, Abreu LC, Porto CS. Effect of estrogen on intracellular signaling pathways linked to activation of M(2)- and M(3)-muscarinic acetylcholine receptors in the rat myometrium. Mol Cell Endocrinol. 2000;160(1-2):17-24. PubMed, CrossRef
  24. Kitazawa T, Uchiyama F, Hirose K, Taneike T. Characterization of the muscarinic receptor subtype that mediates the contractile response of acetylcholine in the swine myometrium. Eur J Pharmacol. 1999;367(2-3):325-334. PubMed, CrossRef
  25. Kitazawa T, Hirama R, Masunaga K, Nakamura T, Asakawa K, Cao J, Teraoka H, Unno T, Komori S, Yamada M, Wess J, Taneike T. Muscarinic receptor subtypes involved in carbachol-induced contraction of mouse uterine smooth muscle. Naunyn Schmiedebergs Arch Pharmacol. 2008;377(4-6):503-513. PubMed, CrossRef
  26. Goureau O, Tanfin Z, Harbon S. Prostaglandins and muscarinic agonists induce cyclic AMP attenuation by two distinct mechanisms in the pregnant-rat myometrium. Interaction between cyclic AMP and Ca2+ signals. Biochem J. 1990;271(3):667-673. PubMed, PubMedCentral, CrossRef
  27. Ichida S, Ariyoshi S, Oka H, Murakami T, Fujisue T. Characteristics of acetylcholine-induced phosphorylase a activity in uterine segments as a substitute for contractile response to acetylcholine. Jpn J Pharmacol. 1988;48(3):307-316. PubMed, CrossRef
  28. Kim MY, Seol GH, Liang GH, Kim JA, Suh SH. Na+-K+ pump activation inhibits endothelium-dependent relaxation by activating the forward mode of Na+/Ca2+ exchanger in mouse aorta. Am J Physiol Heart Circ Physiol. 2005;289(5):H2020-H2029. PubMed, CrossRef
  29. Tong WC, Choi CY, Kharche S, Holden AV, Zhang H, Taggart MJ. A computational model of the ionic currents, Ca2+ dynamics and action potentials underlying contraction of isolated uterine smooth muscle. PLoS One. 2011;6(4):e18685. PubMed, PubMed, CrossRef
  30. Choppin A, Stepan GJ, Loury DN, Watson N, Eglen RM. Characterization of the muscarinic receptor in isolated uterus of sham operated and ovariectomized rats. Br J Pharmacol. 1999;127(7):1551-1558. PubMed, PubMed, CrossRef
  31. Medina JL, Reinicke K, Simpfendörfer R, Roa A, Oliveros H, Bardisa L, Rudolph MI. Characterization and distribution of cholinesterase activity in mouse uterine horns: changes in estrous cycle. Comp Biochem Physiol C Comp Pharmacol Toxicol. 1993;106(2):473-478. PubMed, CrossRef
  32. Nasibyan LS, Philyppov IB. Fffect of peptidoglycane of Staphylococcus aureus cell wall on the mechanism of regulation of contractile activity of rat myometrium by adenylate cyclase system. Fiziol Zh. 2016;62(1):25-33. PubMed, CrossRef
  33. Yuan W, López Bernal A. Cyclic AMP signalling pathways in the regulation of uterine relaxation. BMC Pregnancy Childbirth. 2007;7(Suppl 1):S10. PubMed, PubMed, CrossRef
  34. Darios ES, Seitz B, Watts SW. Smooth muscle pharmacology in the isolated virgin and pregnant rat uterus and cervix. J Pharmacol Exp Ther. 2012;341(3):587-596. PubMed, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.