Ukr.Biochem.J. 2014; Volume 86, Issue 1, Jan-Feb, pp. 5-20


Calpains: general characteristics and role in various states of the organism

N. F. Starodub1, L. M. Samokhina2, S. N. Koval2, I. A. Snegurskaya2

1National University of Life and Environmental Sciences of Ukraine, Kyiv;
2GD L. T. Malaya National Institute of Therapy of NAMS of Ukraine, Kharkov;

Calpains are a family of cytoplasmic calcium-dependent proteinases with papain-like activity. They participate in a variety of processes in the body: age changes, functioning of endothelium and pulmonary system, regulation of apoptosis and necrosis, development of various hypometabolic states, arterial hypertension, diabetes and chronic kidney disease, tumor growth. It is concluded that calpains, causing limited proteolysis of substrates, play an important role in a wide range of biological phenome­na. Their activity is associated with the response to the calcium-dependent signaling and the effects of aging. Inhibition of calpains activity contributes to inhibition of endothelial dysfunction, cardiovascular disease, formation of structural and functional changes in the kidney tissue, has neuroprotective effect, preventing sarcopenia, reduces inflammatory reactions caused by hyperventilation of the lungs.

Keywords: , , , , , , , , ,


  1. Bondareva LA, Nemova NN, Kiaiviariainen EI. Intracellular Ca2+-dependent proteolytic system of animals. M.: Nauka, 2006. 294 p.
  2. Goll DE, Thompson VF, Li H, Wei W, Cong J. The calpain system. Physiol Rev. 2003 Jul;83(3):731-801. PubMed, CrossRef
  3. Nemova NN, Lysenko LA, Kantserova NP. Proteinases of the calpain family: structure and functions. Ontogenez. 2010 Sep-Oct;41(5):381-9. Review. Russian. PubMed
  4. Campbell RL, Davies PL. Structure-function relationships in calpains. Biochem J. 2012 Nov 1;447(3):335-51. PubMed, CrossRef
  5. Sorimachi H, Mamitsuka H, Ono Y. Understanding the substrate specificity of conventional calpains. Biol Chem. 2012 Sep;393(9):853-71. Review.  PubMed, CrossRef
  6. D’Orsi B, Bonner H, Tuffy LP, Düssmann H, Woods I, Courtney MJ, Ward MW, Prehn JH. Calpains are downstream effectors of bax-dependent excitotoxic apoptosis. J Neurosci. 2012 Feb 1;32(5):1847-58. PubMed, CrossRef
  7. Ono Y, Sorimachi H. Calpains: an elaborate proteolytic system. Biochim Biophys Acta. 2012 Jan;1824(1):224-36. Review. PubMed, CrossRef
  8. Farr C, Berger S. Measuring calpain activity in fixed and living cells by flow cytometry. J Vis Exp. 2010 Jul 8;(41). pii: 2050. PubMed; PubMedCentral, CrossRef
  9. Neti G, Novak SM, Thompson VF, Goll DE. Properties of easily releasable myofilaments: are they the first step in myofibrillar protein turnover? Am J Physiol Cell Physiol. 2009 Jun;296(6):C1383-90. PubMed, CrossRef
  10. Maki M, Maemoto Y, Osako Y, Shibata H. Evolutionary and physical linkage between calpains and penta-EF-hand Ca2+-binding proteins. FEBS J. 2012 Apr;279(8):1414-21.  Review. PubMed, CrossRef
  11. Smith MA, Schnellmann RG. Calpains, mitochondria, and apoptosis. Cardiovasc Res. 2012 Oct 1;96(1):32-7. Review. PubMed, PubMedCentral, CrossRef
  12. Maruyama K, Usami M, Kametani F, Tomita T, Iwatsubo T, Saido TC, Mori H, Ishiura S. Molecular interactions between presenilin and calpain: inhibition of m-calpain protease activity by presenilin-1, 2 and cleavage of presenilin-1 by m-, mu-calpain. Int J Mol Med. 2000 Mar;5(3):269-73. PubMed, CrossRef
  13. Thompson VF, Lawson KR, Barlow J, Goll DE. Digestion of mu- and m-calpain by trypsin and chymotrypsin. Biochim Biophys Acta. 2003 May 30;1648(1-2):140-53. PubMed, CrossRef
  14. Bondareva L. A., Nemova N. N. Molecular evolution of intracellular Ca2+-dependent proteases. Rus. J. Bioorganic Chem. 2008 May; 34(3):295-302. CrossRef
  15. Duffy KR, Duffy MS. An in situ method for the examination of calcium-dependent proteolysis. J Neurosci Methods. 2011 Oct 15;201(2):333-9. Epub 2011 Aug 18. PubMed, CrossRef
  16. Thompson VF, Saldaña S, Cong J, Goll DE. A BODIPY fluorescent microplate assay for measuring activity of calpains and other proteases. Anal Biochem. 2000 Mar 15;279(2):170-8. PubMed, CrossRef
  17. Pat. 46357 А UA, ICP G 01 N33/48, A 61 B19/02. Kit for the determination of calpain activity in biological fluids / Samokhina LM, Samokhin AA. Publ. 15.05.2002, Bul. N 5.
  18. Zalewska T., Domanska-Janik K. Praze z Biologii molekularney. 1990;986(19):103-115.
  19. Scalia R, Gong Y, Berzins B, Freund B, Feather D, Landesberg G, Mishra G. A novel role for calpain in the endothelial dysfunction induced by activation of angiotensin II type 1 receptor signaling. Circ Res. 2011 Apr 29;108(9):1102-11. PubMed, CrossRef
  20. Letavernier B, Zafrani L, Nassar D, Perez J, Levi C, Bellocq A, Mesnard L, Sachon E, Haymann JP, Aractingi S, Faussat AM, Baud L, Letavernier E. Calpains contribute to vascular repair in rapidly progressive form of glomerulonephritis: potential role of their externalization. Arterioscler Thromb Vasc Biol. 2012 Feb;32(2):335-42. PubMed, CrossRef
  21. Letavernier E, Zafrani L, Perez J, Letavernier B, Haymann JP, Baud L. The role of calpains in myocardial remodelling and heart failure. Cardiovasc Res. 2012 Oct 1;96(1):38-45.  Review. PubMed, CrossRef
  22. Santos DM, Xavier JM, Morgado AL, Solá S, Rodrigues CM. Distinct regulatory functions of calpain 1 and 2 during neural stem cell self-renewal and differentiation. PLoS One. 2012;7(3):e33468. PubMed, PubMedCentral, CrossRef
  23. Roumes H, Leloup L, Dargelos E, Brustis JJ, Daury L, Cottin P. Calpains: markers of tumor aggressiveness? Exp Cell Res. 2010 May 15;316(9):1587-99. PubMed, CrossRef
  24. Louis M, Zanou N, Van Schoor M, Gailly P. TRPC1 regulates skeletal myoblast migration and differentiation. J Cell Sci. 2008 Dec 1;121(Pt 23):3951-9. Epub 2008 Nov 11. PubMed, CrossRef
  25. Castiglioni S, Maier JA. The tyrosine phosphatase HD-PTP (PTPN23) is degraded by calpains in a calcium-dependent manner. Biochem Biophys Res Commun. 2012 May 4;421(2):380-3. PubMed, CrossRef
  26. Dedieu S, Poussard S, Mazères G, Grise F, Dargelos E, Cottin P, Brustis JJ. Myoblast migration is regulated by calpain through its involvement in cell attachment and cytoskeletal organization. Exp Cell Res. 2004 Jan 1;292(1):187-200. PubMed, CrossRef
  27. Moyen C, Goudenege S, Poussard S, Sassi AH, Brustis JJ, Cottin P. Involvement of micro-calpain (CAPN 1) in muscle cell differentiation. Int J Biochem Cell Biol. 2004 Apr;36(4):728-43. PubMed, CrossRef
  28. Łopatniuk P, Witkowski JM. Conventional calpains and programmed cell death. Acta Biochim Pol. 2011;58(3):287-96.  Review. PubMed
  29. Zaidi A. Plasma membrane Ca-ATPases: Targets of oxidative stress in brain aging and neurodegeneration. World J Biol Chem. 2010 Sep 26;1(9):271-80. PubMed, PubMedCentral, CrossRef
  30. Cai Y, Zhu HX, Li JM, Luo XG, Patrylo PR, Rose GM, Streeter J, Hayes R, Wang KK, Yan XX, Jeromin A. Age-related intraneuronal elevation of αII-spectrin breakdown product SBDP120 in rodent forebrain accelerates in 3×Tg-AD mice. PLoS One. 2012;7(6):e37599. PubMed, CrossRef
  31. Medeiros R, Kitazawa M, Chabrier MA, Cheng D, Baglietto-Vargas D, Kling A, Moeller A, Green KN, LaFerla FM. Calpain inhibitor A-705253 mitigates Alzheimer’s disease-like pathology and cognitive decline in aged 3xTgAD mice. Am J Pathol. 2012 Aug;181(2):616-25. PubMed, CrossRef
  32. Granic I, Nyakas C, Luiten PG, Eisel UL, Halmy LG, Gross G, Schoemaker H, Möller A, Nimmrich V. Calpain inhibition prevents amyloid-beta-induced neurodegeneration and associated behavioral dysfunction in rats. Neuropharmacology. 2010 Sep-Oct;59(4-5):334-42.  PubMed, CrossRef
  33. Samengo G, Avik A, Fedor B, Whittaker D, Myung KH, Wehling-Henricks M, Tidball JG. Age-related loss of nitric oxide synthase in skeletal muscle causes reductions in calpain S-nitrosylation that increase myofibril degradation and sarcopenia. Aging Cell. 2012 Dec;11(6):1036-45.  PubMed, PubMedCentral, CrossRef
  34. Brulé C, Dargelos E, Diallo R, Listrat A, Béchet D, Cottin P, Poussard S. Proteomic study of calpain interacting proteins during skeletal muscle aging. Biochimie. 2010 Dec;92(12):1923-33. PubMed, CrossRef
  35. Ohno Y, Yamada S, Goto A, Ikuta A, Sugiura T, Ohira Y, Yoshioka T, Goto K. Effects of heat stress on muscle mass and the expression levels of heat shock proteins and lysosomal cathepsin L in soleus muscle of young and aged mice. Mol Cell Biochem. 2012 Oct;369(1-2):45-53.  PubMed, CrossRef
  36. Zhang BT, Whitehead NP, Gervasio OL, Reardon TF, Vale M, Fatkin D, Dietrich A, Yeung EW, Allen DG. Pathways of Ca²⁺ entry and cytoskeletal damage following eccentric contractions in mouse skeletal muscle. J Appl Physiol. (1985). 2012 Jun;112(12):2077-86.  PubMed, PubMedCentral, CrossRef
  37. Arun P, Aleti V, Parikh K, Manne V, Chilukuri N. Senescence marker protein 30 (SMP30) expression in eukaryotic cells: existence of multiple species and membrane localization. PLoS One. 2011 Feb 9;6(2):e16545. PubMed, CrossRef
  38. Hoang MV, Nagy JA, Fox JE, Senger DR. Moderation of calpain activity promotes neovascular integration and lumen formation during VEGF-induced pathological angiogenesis. PLoS One. 2010 Oct 25;5(10):e13612. PubMed, CrossRef
  39. Liu D, Yan Z, Minshall RD, Schwartz DE, Chen Y, Hu G. Activation of calpains mediates early lung neutrophilic inflammation in ventilator-induced lung injury. Am J Physiol Lung Cell Mol Physiol. 2012 Feb 15;302(4):L370-9.  PubMed, PubMedCentral, CrossRef
  40.  Samokhina L.M., Yefimov V.V., Zamaziy A.Ye., Voieikova L.S. Calpains in “proteinase – proteinase inhibitor” system in patients with chronic obstructive pulmonary disease. Med. Chemistry. 2006;8(2):19–22.
  41. Orrenius S, Nicotera P, Zhivotovsky B. Cell death mechanisms and their implications in toxicology. Toxicol Sci. 2011 Jan;119(1):3-19. Review. PubMed, CrossRef
  42. Inserte J, Hernando V, Garcia-Dorado D. Contribution of calpains to myocardial ischaemia/reperfusion injury. Cardiovasc Res. 2012 Oct 1;96(1):23-31. Review. PubMed, CrossRef
  43. van Raam BJ, Drewniak A, Groenewold V, van den Berg TK, Kuijpers TW. Granulocyte colony-stimulating factor delays neutrophil apoptosis by inhibition of calpains upstream of caspase-3. Blood. 2008 Sep 1;112(5):2046-54. PubMed, PubMedCentral, CrossRef
  44. Vinokurov МG, Yurinskaya ММ. Regulation of neutrophil apoptosis by the action of lipopolysaccharides. Biologicheskie Membrany. 2010; 27(1): 18-27.
  45. Arnal N, de Alaniz MJ, Marra CA. Cytotoxic effects of copper overload on human-derived lung and liver cells in culture. Biochim Biophys Acta. 2012 Jul;1820(7):931-9.  PubMed, CrossRef
  46. Kaliman PA, Samokhin AA, Samokhina LM. Activity of Ca2+-dependent neutral proteinases in sime organs of rats under cobalt and mercury chloride injection.  Ukr Biokhim Zhurn. 2003;75(1):104–106. PubMed
  47. Bondareva LA, Nemova NN, Kiaiviariainen EI, Krupnova MYu, Ostashkova VV. The effect of food mercury salts intoxication on the activity of cysteine proteases in the rats tissues. Izvestiya RAS. Biology. 2003;(1):47-50.
  48. Samokhina LM, Lomako V V, Shilo OV. Chymase, tonin and calpains under artificial hypometabolic state in hamsters. Probl. Cryobiol. 2007;17(4):347–355.
  49. McCollum AT, Jafarifar F, Lynn BC, Agu RU, Stinchcomb AL, Wang S, Chen Q, Guttmann RP. Inhibition of calpain-mediated cell death by a novel peptide inhibitor. Exp Neurol. 2006 Dec;202(2):506-13. PubMed
  50. Samokhina LM, Lomako V V, Shilo OV. Chymase, tonin and calpains under conditions of natural hibernation in hamsters. Achievements of Biology and Medicine. 2010;16(2):29-32.
  51. Andrews MT. Advances in molecular biology of hibernation in mammals. Bioessays. 2007 May;29(5):431-40. Review. PubMed
  52. Samokhina LM, Lazareva SO, Volkov VI. Peculiarities of tonin and calpain involvement in the pathogenesis of heart failure.  Achievements of Biology and Medicine. 2007;(1):14-17.
  53. Tseluyko VI, Kravchenko NA. Biochemical mechanismes of development of heart failure. Ukr Therap J. 2004;(4):70-76.
  54. Samokhina LM, Topchiy II, Nesen AA. Calpains in proteinase-α-1-proteinase inhibitor system at hypertension and chronic kidney disease. World of Medicine and Biology. 2011;(3):116-121.
  55.  Samokhina LM, Lomako VV. Sexual features of participation of some enzymes of angiotenzin II formation and calcium-dependent proteinasеs in pathogenesis of alcohol-dependent hypertension. Journal of V.N.Karazin Kharkiv National University. Series: Biology. 2011;13(947):23-28.
  56. Taneike M, Mizote I, Morita T, Watanabe T, Hikoso S, Yamaguchi O, Takeda T, Oka T, Tamai T, Oyabu J, Murakawa T, Nakayama H, Nishida K, Takeda J, Mochizuki N, Komuro I, Otsu K. Calpain protects the heart from hemodynamic stress. J Biol Chem. 2011 Sep 16;286(37):32170-7. PubMed, PubMedCentral, CrossRef
  57. Müller AL, Dhalla NS. Role of various proteases in cardiac remodeling and progression of heart failure. Heart Fail Rev. 2012 May;17(3):395-409. Review. PubMedCrossRef
  58. Sorimachi H, Ono Y. Regulation and physiological roles of the calpain system in muscular disorders. Cardiovasc Res. 2012 Oct 1;96(1):11-22. Epub 2012 Apr 27. Review. PubMed, PubMedCentral, CrossRef
  59. Chaudhary P, Suryakumar G, Prasad R, Singh SN, Ali S, Ilavazhagan G. Chronic hypobaric hypoxia mediated skeletal muscle atrophy: role of ubiquitin-proteasome pathway and calpains. Mol Cell Biochem. 2012 May;364(1-2):101-13. PubMed, CrossRef
  60. Randriamboavonjy V, Isaak J, Elgheznawy A, Pistrosch F, Frömel T, Yin X, Badenhoop K, Heide H, Mayr M, Fleming I. Calpain inhibition stabilizes the platelet proteome and reactivity in diabetes. Blood. 2012 Jul 12;120(2):415-23.  PubMedCrossRef
  61. Smolock AR, Mishra G, Eguchi K, Eguchi S, Scalia R. Protein kinase C upregulates intercellular adhesion molecule-1 and leukocyte-endothelium interactions in hyperglycemia via activation of endothelial expressed calpain. Arterioscler Thromb Vasc Biol. 2011 Feb;31(2):289-96. PubMed, PubMedCentral, CrossRef
  62. Covington MD, Schnellmann RG. Chronic high glucose downregulates mitochondrial calpain 10 and contributes to renal cell death and diabetes-induced renal injury. Kidney Int. 2012 Feb;81(4):391-400. PubMed, CrossRef
  63. Topchiy II, Samokhina LM, Nesen AA., Derevyanchenko L. I. The proteinase and proteinase inhibitors system in patients with chronic kidney disease in the dynamics of nefroprotective therapy. Ukr Therap J. 2008;(4):69-73.
  64. Samokhina LM, Topchiy II, Nesen AO. Proteinase – proteinase inhibitor system in the assessment of the vasoconstrictor and apoptogenic alterarions in patients with chronic kidney disease. Ukr J Nephrol Dial. 2008;17(1):33-37.

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.