Ukr.Biochem.J. 2024; Volume 96, Issue 6, Nov-Dec, pp. 74-81
doi: https://doi.org/10.15407/ubj96.06.074
C(60) fullerene effect on the functional activity of rat gastrocnemius muscle during its regeneration after the open injury
D. M. Nozdrenko1, O. O. Gonchar2, N. E. Nurishchenko1,
V. O. Stetska1, T. Yu. Matviienko1, Ya. V. Stepanyuk3,
K. I. Bogutska1, Yu. I. Prylutskyy1*
1ESC “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, Ukraine;
2Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv;
3Medical Faculty, Lesya Ukrainka Volyn National University, Lutsk, Ukraine;
*e-mail: prylut@ukr.net
Received: 05 September 2024; Revised: 14 October 2024;
Accepted: 21 November 2024; Available on-line: 17 December 2024
Open injuries are one of the most common skeletal muscle traumas. The study aimed to estimate the effect of the oral administration of C60 fullerene aqueous solution (C60FAS) daily at a dose of 1 mg/kg on the restoration of rat skeletal muscle functional activity on the 5th, 10th and 15th day after the open trauma. Male Wistar rats were randomly divided into three groups of 12 animals in each: control, with muscle injury and with muscle injury+C60FAS. The isolated gastrocnemius muscle was subjected to open injury by transverse dissection with a depth of 1 mm. Stimulation of muscle efferents was carried out by electrical impulses generated using a strain gauge generator. The content of C-reactive protein, creatinine, lactate, reduced glutathione and the activity of catalase and superoxide dismutase in the rat blood were determined. According to the data obtained, application of C60FAS promotes the restoration of the functional activity of injured muscle, which was confirmed by a significant increase in gastrocnemius muscle force impulse, attenuation of the inflammatory and development of fatigue and normalization of pro- and antioxidant balance in the process of regeneration.
Keywords: C60 fullerene, gastrocnemius muscle, lactate, muscle force impulse, open injury, pro-antioxidant balance, protein C
References:
- Järvinen TA, Järvinen TL, Kääriäinen M, Aärimaa V, Vaittinen S, Kalimo H, Järvinen M. Muscle injuries: optimising recovery. Best Pract Res Clin Rheumatol. 2007;21(2):317-331. PubMed, CrossRef
- Gharaibeh B, Chun-Lansinger Y, Hagen T, Ingham SJ, Wright V, Fu F, Huard J. Biological approaches to improve skeletal muscle healing after injury and disease. Birth Defects Res C Embryo Today. 2012;96(1):82-94. PubMed, PubMedCentral, CrossRef
- Faulkner JA, Brooks SV, Opiteck JA. Injury to skeletal muscle fibers during contractions: conditions of occurrence and prevention. Phys Ther. 1993;73(12):911-921. PubMed, CrossRef
- Tidball JG. Mechanisms of muscle injury, repair, and regeneration. Compr Physiol. 2011;1(4):2029-2062. PubMed, CrossRef
- Corona BT, Wenke JC, Ward CL. Pathophysiology of Volumetric Muscle Loss Injury. Cells Tissues Organs. 2016;202(3-4):180-188. PubMed, CrossRef
- Clark AR, Mauntel TC, Goldman SM, Dearth CL. Repurposing existing products to accelerate injury recovery (REPAIR) of military relevant musculoskeletal conditions. Front Bioeng Biotechnol. 2023;10:1105599. PubMed, PubMedCentral, CrossRef
- Kozakowska M, Pietraszek-Gremplewicz K, Jozkowicz A, Dulak J. The role of oxidative stress in skeletal muscle injury and regeneration: focus on antioxidant enzymes. J Muscle Res Cell Motil. 2015;36(6):377-393. PubMed, PubMedCentral, CrossRef
- Kobayashi M, Ota S, Terada S, Kawakami Y, Otsuka T, Fu FH, Huard J. The Combined Use of Losartan and Muscle-Derived Stem Cells Significantly Improves the Functional Recovery of Muscle in a Young Mouse Model of Contusion Injuries. Am J Sports Med. 2016;44(12):3252-3261. PubMed, PubMedCentral, CrossRef
- Ohmae S, Akazawa S, Takahashi T, Izumo T, Rogi T, Nakai M. Quercetin attenuates adipogenesis and fibrosis in human skeletal muscle. Biochem Biophys Res Commun. 2022;615:24-30. PubMed, CrossRef
- Halenova T, Raksha N, Savchuk O, Ostapchenko L, Prylutskyy Yu, Ritter U, Scharff P. Evaluation of the biocompatibility of water-soluble pristine C60 fullerenes in rabbit. BioNanoSci. 2020;10(3):721-730. CrossRef
- Krusic PJ, Wasserman E, Keizer PN, Morton JR, Preston KF. Radical reactions of C60. Science. 1991;254(5035):1183-1185. PubMed, CrossRef
- Nozdrenko D, Abramchuk O, Prylutska S, Vygovska O, Soroca V, Bogutska K, Khrapatyi S, Prylutskyy Y, Scharff P, Ritter U. Analysis of Biomechanical Parameters of Muscle Soleus Contraction and Blood Biochemical Parameters in Rat with Chronic Glyphosate Intoxication and Therapeutic Use of C60 Fullerene. Int J Mol Sci. 2021;22(9):4977. PubMed, PubMedCentral, CrossRef
- Nozdrenko D, Matvienko T, Vygovska O, Bogutska K, Motuziuk O, Nurishchenko N, Prylutskyy Y, Scharff P, Ritter U. Protective Effect of Water-Soluble C60 Fullerene Nanoparticles on the Ischemia-Reperfusion Injury of the Muscle Soleus in Rats. Int J Mol Sci. 2021;22(13):6812. PubMed, PubMedCentral, CrossRef
- Nozdrenko D, Prylutska S, Bogutska K, Nurishchenko NY, Abramchuk O, Motuziuk O, Prylutskyy Y, Scharff P, Ritter U. Effect of C60 Fullerene on Recovery of Muscle Soleus in Rats after Atrophy Induced by Achillotenotomy. Life (Basel). 2022;12(3):332. PubMed, PubMedCentral, CrossRef
- Grebinyk A, Prylutska S, Buchelnikov A, Tverdokhleb N, Grebinyk S, Evstigneev M, Matyshevska O, Cherepanov V, Prylutskyy Y, Yashchuk V, Naumovets A, Ritter U, Dandekar T, Frohme M. C60 Fullerene as an Effective Nanoplatform of Alkaloid Berberine Delivery into Leukemic Cells. Pharmaceutics. 2019;11(11):586. PubMed, PubMedCentral, CrossRef
- Prylutska S, Politenkova S, Afanasieva K, Korolovych V, Bogutska K, Sivolob A, Skivka L, Evstigneev M, Kostjukov V, Prylutskyy Y, Ritter U. A nanocomplex of C60 fullerene with cisplatin: design, characterization and toxicity. Beilstein J Nanotechnol. 2017;8:1494-1501. PubMed, PubMedCentral, CrossRef
- Gharbi N, Pressac M, Hadchouel M, Szwarc H, Wilson SR, Moussa F. [60]fullerene is a powerful antioxidant in vivo with no acute or subacute toxicity. Nano Lett. 2005;5(12):2578-2585. PubMed, CrossRef
- Prylutska SV, Grebinyk AG, Lynchak OV, Byelinska IV, Cherepanov VV, Tauscher E, Matyshevska OP, Prylutskyy YuI, Rybalchenko VK, Ritter U, Frohme M. In vitro and in vivo toxicity of pristine C60 fullerene aqueous colloid solution. Fuller Nanotubes Carbon Nanostruct. 2019;27(9):715-728. CrossRef
- Sicherer ST, Venkatarama RS, Grasman JM. Recent Trends in Injury Models to Study Skeletal Muscle Regeneration and Repair. Bioengineering (Basel). 2020;7(3):76. PubMed, PubMedCentral, CrossRef
- Best TM, Hunter KD. Muscle injury and repair. Phys Med Rehabil Clin N Am. 2000;11(2):251-266. PubMed, CrossRef
- Nozdrenko DM, Abramchuk OM, Soroca VM, Miroshnichenko NS. Aluminum chloride effect on Ca2+,Mg2+-ATPase activity and dynamic parameters of skeletal muscle contraction. Ukr Biochem J. 2015;87(5):38-45. PubMed, CrossRef
- Nozdrenko D, Matvienko T, Vygovska O, Soroca V, Bogutska K, Zholos A, Scharff P, Ritter U, Prylutskyy Y. Post-traumatic recovery of muscle soleus in rats is improved via synergistic effect of C60 fullerene and TRPM8 agonist menthol. Appl Nanosci. 2021;12:467-478. CrossRef
- Isaacs AW, Macaluso F, Smith C, Myburgh KH. C-Reactive Protein Is Elevated Only in High Creatine Kinase Responders to Muscle Damaging Exercise. Front Physiol. 2019;10:86. PubMed, PubMedCentral, CrossRef
- Omelchuk O, Prylutska S, Nozdrenko D, Motuziuk O, Vareniuk I, Bogutska K, Vygovska O, Zholos А, Prylutskyy Yu. C60 fullerene attenuates the signs of acute renal failure in rats under rhabdomyolysis due to inhibition of oxidative stress. Ukr Biochem J. 2023;95(5):61-75. CrossRef
- Lismont C, Revenco I, Fransen M. Peroxisomal Hydrogen Peroxide Metabolism and Signaling in Health and Disease. Int J Mol Sci. 2019;20(15):3673. PubMed, PubMedCentral, CrossRef
- Bartoloni B, Mannelli M, Gamberi T, Fiaschi T. The Multiple Roles of Lactate in the Skeletal Muscle. Cells. 2024;13(14):1177. PubMed, PubMedCentral, CrossRef
- Baxmann AC, Ahmed MS, Marques NC, Menon VB, Pereira AB, Kirsztajn GM, Heilberg IP. Influence of muscle mass and physical activity on serum and urinary creatinine and serum cystatin C. Clin J Am Soc Nephrol. 2008;3(2):348-354. PubMed, PubMedCentral, CrossRef
- Hassan EA, Al-Zuhairi WS, Ibrahim WA. Antioxidants and Their Role in Preventing Diseases: A Review. Ear J Chem Sci. 2022;7(2):165-182. CrossRef
- Weschawalit S, Thongthip S, Phutrakool P, Asawanonda P. Glutathione and its antiaging and antimelanogenic effects. Clin Cosmet Investig Dermatol. 2017;10:147-153. PubMed, PubMedCentral, CrossRef
This work is licensed under a Creative Commons Attribution 4.0 International License.