Ukr.Biochem.J. 2025; Volume 97, Issue 3, May-Jun, pp. 13-41

doi: https://doi.org/10.15407/ubj97.03.013

Stress metabolites in wheat: role in adaptation to drought

Yu. E. Kolupaev1,2*, L. I. Relina1, A. I. Oboznyi1, N. I. Ryabchun1,
N. I. Vasko1, V. P. Kolomatska1, O. Yu. Leonov1

1Yuriev Plant Production Institute, National Academy
of Agrarian Sciences of Ukraine, Kharkiv;
2Poltava State Agrarian University, Poltava, Ukraine;
*e-mail: plant_biology@ukr.net

Received: 25 April 2025; Revised: 21 May 2025;
Accepted: 11 June 2025; Available on-line: 07 July 2025

Drought is one of the main factors limiting agricultural production and leading to crop losses. Wheat, being a source of food for over half of the world’s population, is a plant species that is very susceptible to drought. In this regard, research into the species-specific stress metabolites and physiological and biochemical mechanisms of drought tolerance is of particular practical interest. This review comprehensively examines the roles of soluble carbohydrates, proline, polyamines, and GABA, as well as their functional interplay, in adaptation of wheat and other plant species to drought.

Keywords: , , , , , , , , ,


References:

  1. Razzaq A, Wani SH, Saleem F, Yu M, Zhou M, Shabala S. Rewilding crops for climate resilience: economic analysis and de novo domestication strategies. J Exp Bot. 2021;72(18):6123-6139. PubMed, CrossRef
  2. IWG Drought. 2020. Regime of access: https://www.unccd.int/sites/default/files/2020-03/IWGDrought-Factsheets_EN-final.pdf.
  3. Palmgren M, Shabala S. Adapting crops for climate change: regaining lost abiotic stress tolerance in crops. Front Sci. 2024;2:1416023. CrossRef
  4. Gupta A, Rico-Medina A, Caño-Delgado AI. The physiology of plant responses to drought. Science. 2020;368(6488):266-269. PubMed, CrossRef
  5. Dietz KJ, Zörb C, Geilfus CM. Drought and crop yield. Plant Biol (Stuttg). 2021;23(6):881-893. PubMed, CrossRef
  6. Diego N, Spíchal L. Use of plant metabolites to mitigate stress effects in crops. In: Geelen D, Xu L. (eds.). The Chemical Biology of Plant Biostimulants. John Wiley & Sons Ltd, 2020. P. 261-300. CrossRef
  7. Kirizyi D, Kedruk A, Stasik O. Effects of drought, high temperature and their combinations on the photosynthetic apparatus and plant productivity. In: Yastreb TO, Kolupaev YE, Yemets AI, Blume YB (eds.). Regulation of Adaptive Responses in Plants. New York: Nova Science Publishers, Inc., 2024. P. 1-32.
  8. Sharma A, Shahzad B, Kumar V, Kohli SK, Sidhu GPS, Bali AS, Handa N, Kapoor D, Bhardwaj R, Zheng B. Phytohormones Regulate Accumulation of Osmolytes Under Abiotic Stress. Biomolecules. 2019;9(7):285. PubMed, PubMed, CrossRef
  9. Manna M, Thakur T, Chirom O, Mandlik R, Deshmukh R, Salvi P. Transcription factors as key molecular target to strengthen the drought stress tolerance in plants. Physiol Plant. 2021;172(2):847-868. PubMed, CrossRef
  10. Singh J, Garai S, Das S, Thakur JK, Tripathy BC. Role of C4 photosynthetic enzyme isoforms in C3 plants and their potential applications in improving agronomic traits in crops. Photosynth Res. 2022;154(3):233-258. PubMed, CrossRef
  11. Kosová K, Vítámvás P, Prášil IT. Wheat and barley dehydrins under cold, drought, and salinity – what can LEA-II proteins tell us about plant stress response? Front Plant Sci. 2014;5:343. PubMed, PubMed, CrossRef
  12. Laxa M, Liebthal M, Telman W, Chibani K, Dietz KJ. The Role of the plant antioxidant system in drought tolerance. Antioxidants (Basel). 2019;8(4):94. PubMed, PubMed, CrossRef
  13. Smith MA, Graether SP. The Disordered Dehydrin and Its Role in Plant Protection: A Biochemical Perspective. Biomolecules. 2022;12(2):294. PubMed, PubMed, CrossRef
  14. Kolupaev YuE, Yastreb TO, Ryabchun NI, Kokorev AI, Kolomatska VP, Dmitriev AP. Redox homeostasis of cereals during acclimation to drought. Theor Exp Plant Physiol. 2023;35(2): 133-168. CrossRef
  15. Singh M, Kumar J, Singh S, Singh VP, Prasad SM. Roles of osmoprotectants in improving salinity and drought tolerance in plants: a review. Rev Environ Sci Biotechnol. 2015;14:407-426. CrossRef
  16. Sun Z, Li S, Chen W, Zhang J, Zhang L, Sun W, Wang Z. Plant Dehydrins: Expression, Regulatory Networks, and Protective Roles in Plants Challenged by Abiotic Stress. Int J Mol Sci. 2021;22(23):12619. PubMed, PubMed, CrossRef
  17. Riyazuddin R, Nisha N, Singh K, Verma R, Gupta R. Involvement of dehydrin proteins in mitigating the negative effects of drought stress in plants. Plant Cell Rep. 2022;41(3):519-533.  PubMed, CrossRef
  18. Szlachtowska Z, Rurek M. Plant dehydrins and dehydrin-like proteins: characterization and participation in abiotic stress response. Front Plant Sci. 2023;14:1213188. PubMed, PubMed, CrossRef
  19. Norouzi M, Toorchi M, Hosseina Salekdeh Gh, Mohammadi SA, Neyshabouri MR, Aharizad S. Effect of water deficit on growth, grain yield and osmotic adjustment in rapeseed. J Food Agricult Environ. 2008;6(2):312-318.
  20. Blum A. Osmotic adjustment is a prime drought stress adaptive engine in support of plant production. Plant Cell Environ. 2017;40(1):4-10. PubMed, CrossRef
  21.  Mahmood T, Abdullah M, Ahmar S, Yasir M, Iqbal MS, Yasir M, Ur Rehman S, Ahmed S, Rana RM, Ghafoor A, Nawaz Shah MK, Du X, Mora-Poblete F. Incredible Role of Osmotic Adjustment in Grain Yield Sustainability under Water Scarcity Conditions in Wheat (Triticum aestivum L.). Plants (Basel). 2020;9(9):1208. PubMed, PubMed, CrossRef
  22. Wahab A, Abdi G, Saleem MH, Ali B, Ullah S, Shah W, Mumtaz S, Yasin G, Muresan CC, Marc RA. Plants’ Physio-Biochemical and Phyto-Hormonal Responses to Alleviate the Adverse Effects of Drought Stress: A Comprehensive Review. Plants (Basel). 2022;11(13):1620. PubMed, PubMed, CrossRef
  23. Gupta N, Thind SK. Foliar application of glycine betaine alters sugar metabolism of wheat leaves under prolonged field drought stress. Proc Natl Acad Sci, India, Sect. B Biol Sci. 2019; 89:877-884. CrossRef
  24. Akula R, Mukherjee S. New insights on neurotransmitters signaling mechanisms in plants. Plant Signal Behav. 2020;15(6):1737450. PubMed, PubMed, CrossRef
  25. Suhel M, Husain T, Pandey A, Singh S, Dubey NK, Prasad SM, Singh VP. An appraisal of ancient molecule GABA in abiotic stress tolerance in plants, and its crosstalk with other signaling molecules. J Plant Growth Regul. 2023;42:614-629.  CrossRef
  26. Jurkonienė S, Mockevičiūtė R, Gavelienė V, Šveikauskas V, Zareyan M, Jankovska-Bortkevič E, Jankauskienė J, Žalnierius T, Kozeko L. Proline Enhances Resistance and Recovery of Oilseed Rape after a Simulated Prolonged Drought. Plants (Basel). 2023;12(14):2718. PubMed, PubMed, CrossRef
  27. Guo X, Xin Z, Yang T, Ma X, Zhang Y, Wang Z, Ren Y, Lin T. Metabolomics Response for Drought Stress Tolerance in Chinese Wheat Genotypes (Triticum aestivum). Plants (Basel). 2020;9(4):520. PubMed, PubMed, CrossRef
  28. Raza A, Anas M, Bhardwaj S, Mir RA, Charagh S, Elahi M, Zhang X, Mir RR, Weckwerth W, Fernie AR, Siddique KHM, Hu Z, Varshney RK. Harnessing metabolomics for enhanced crop drought tolerance. Crop J. 2025;13(2):311-327. CrossRef
  29. Hasanuzzaman M, Mahmud JA, Anee TI, Nahar K, Islam MT. Drought stress tolerance in wheat: Omics approaches in understanding and enhancing antioxidant defense. In: Zargar S, Zargar M. (eds.). Abiotic Stress-Mediated Sensing and Signaling in Plants: An Omics Perspective. Springer, Singapore, 2018. P. 267-307. CrossRef
  30. Munaweera TIK, Jayawardana NU, Rajaratnam R, Dissanayake N. Modern plant biotechnology as a strategy in addressing climate change and attaining food security. Agric Food Secur. 2022;11:26. CrossRef
  31. Asseng S, Milroy S, Bassu S., Saab MT. Wheat. In: Steduto P, Hsiao TC, Fereres E, Raes D. (eds.). Crop yield response to water. Rome: Food and Agriculture Organization of the United Nations, 2012. P. 92-100.
  32. Khan N, Ali S, Zandi P, Mehmood A, Ullah S, Ismail MI, Shahid MA, Babar MA. Role of sugars, amino acids and organic acids in improving plant abiotic stress tolerance. Pak J Bot. 2020;52(2):355-363. CrossRef
  33. Kaur H, Manna M, Thakur T, Gautam V, Salvi P. Imperative role of sugar signaling and transport during drought stress responses in plants. Physiol Plant. 2021;171(4):833-848. PubMed, CrossRef
  34. Bilyavska NO, Fediuk OM, Zolotareva EK. Chloroplasts of cold-tolerant plants. Plant Sci Today. 2019;6(4):407-411. CrossRef
  35. Dutta T, Neelapu NR, Wani SH, Surekha C. Role and Regulation of Osmolytes as Signaling Molecules to Abiotic Stress Tolerance. In: Khan MIR, Ferrante A, Reddy PS, Khan NA. Plant Signaling Molecules. Role and Regulation Under Stressful Environments. Elsevier Inc., 2019. P. 459-477. CrossRef
  36. Salam U, Ullah S, Tang ZH, Elateeq AA, Khan Y, Khan J, Khan A, Ali S. Plant metabolomics: an overview of the role of primary and secondary metabolites against different environmental stress factors. Life (Basel). 2023;13(3):706. PubMed, PubMed, CrossRef
  37.  Gurrieri L, Merico M, Trost P, Forlani G, Sparla F. Impact of drought on soluble sugars and free proline content in selected Arabidopsis mutants. Biology (Basel). 2020;29;9(11):367. PubMed, PubMed, CrossRef
  38.  Caffrey M, Fonseca V, Leopold AC. Lipid-sugar interactions : relevance to anhydrous biology. Plant Physiol. 1988;86(3):754-758. PubMed, PubMed, CrossRef
  39. Strauss G, Hauser H. Stabilization of lipid bilayer vesicles by sucrose during freezing. Proc Natl Acad Sci USA. 1986;83(8):2422-2426. PubMed, PubMed, CrossRef
  40. Van den Ende W, El-Esawe SK. Sucrose signaling pathways leading to fructan and anthocyanin accumulation: a dual function in abiotic and biotic stress responses? Environ Exp Botany. 2014;108:4-13. CrossRef
  41. Coello P, Hey SJ, Halford NG. The sucrose non-fermenting-1-related (SnRK) family of protein kinases: potential for manipulation to improve stress tolerance and increase yield. J Exp Bot. 2011;62(3):883-893. PubMed, CrossRef
  42. Kolupaev YE, Yastreb TO, Dmitriev AP. Gasotransmitters as key members of the signaling network regulating stomatal response: interaction with other molecules. Phyton-Int J Exp Bot. 2024;93(12):3151-3195. CrossRef
  43. Morelli R, Russo-Volpe S, Bruno N, Lo Scalzo R. Fenton-dependent damage to carbohydrates: free radical scavenging activity of some simple sugars. J Agric Food Chem. 2003;51(25):7418-7425. PubMed, CrossRef
  44. Ende WV, Peshev D. Sugars as antioxidants in plants. In: Tuteja N, Gill S (eds.). Crop Improvement Under Adverse Conditions. Springer, New York, 2013. P. 285-307. CrossRef
  45. Gangola MP, Ramadoss BR. Sugars play a critical role in abiotic stress tolerance in plants. In: Wani SH. (ed.). Biochemical, Physiological and Molecular Avenues for Combating Abiotic Stress Tolerance Plants. Academic Press, 2018. P. 17-38. CrossRef
  46. Hu M, Shi Z, Zhang Z, Zhang Y, Li H. Effects of exogenous glucose on seed germination and antioxidant capacity in wheat seedlings under salt stress. Plant Growth Regul. 2012;68:177-188. CrossRef
  47. Sami F, Yusuf M, Faizan M, Faraz A, Hayat S. Role of sugars under abiotic stress. Plant Physiol Biochem. 2016;109:54-61. PubMed, CrossRef
  48. Kosar F, Akram NA, Sadiq M, Al-Qurainy F, Ashraf M. Trehalose: A key organic osmolyte effectively involved in plant abiotic stress tolerance. J Plant Growth Regul. 2019;38:606-618. CrossRef
  49. Teramoto N, Sachinvala ND, Shibata M. Trehalose and trehalose-based polymers for environmentally benign, biocompatible and bioactive materials. Molecules. 2008;13(8):1773-1816. PubMed, PubMed, CrossRef
  50. Rasheed Y, Khalid F, Ashraf H, Asif K, Maqsood MF, Naz N, Shahbaz M, Zulfiqar U, Ali Q, Rana S. Enhancing plant stress resilience with osmolytes and nanoparticles. J Soil Sci Plant Nutr. 2024;24:1871-1906. CrossRef
  51. Luo Y, Li WM, Wang W. Trehalose: protector of antioxidant enzymes or reactive oxygen species scavenger under heat stress? Environ Exp Bot. 2008;63(1-3):378-384. CrossRef
  52. John R, Raja V, Ahmad M, Jan N, Majeed U, Ahmad S, Yaqoob U, Kaul T. Trehalose: metabolism and role in stress signalling in plants. In: Sarwat M, Ahmad A, Abdin M, Ibrahim M. (eds.). Stress Signaling in Plants: Genomics and Proteomics Perspective. Springer, Cham., 2017. Vol. 2. P. 261-275. CrossRef
  53. Yeo ET, Kwon HB, Han SE, Lee JT, Ryu JC, Byu MO. Genetic engineering of drought resistant potato plants by introduction of the trehalose-6-phosphate synthase (TPS1) gene from Saccharomyces cerevisiae. Mol Cells. 2000;10(3):263-268. PubMed, CrossRef
  54. Cortina C, Culiáñez-Macià FA. Tomato abiotic stress enhanced tolerance by trehalose biosynthesis. Plant Sci. 2005;169(1):75-82. CrossRef
  55. Sah SK, Kaur G, Wani SH. Metabolic engineering of compatible solute trehalose for abiotic stress tolerance in plants. In: Iqbal N, Nazar R, Khan NA. Osmolytes and Plants Acclimation to Changing Environment: Emerging Omics Technologies. Springer, New Delhi. 2016. P. 83–96. CrossRef
  56. Garg AK, Kim JK, Owens TG, Ranwala AP, Choi YD, Kochian LV, Wu RJ. Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc Natl Acad Sci USA. 2002;99(25):15898-15903. PubMed, PubMed, CrossRef
  57. Yan S, Liu Q, Li W, Yan J, Fernie AR. Raffinose family oligosaccharides: crucial regulators of plant development stress responses. Crit Rev Plant Sci. 2022;41(4):286-303. CrossRef
  58. Cacela C, Hincha DK. Low amounts of sucrose are sufficient to depress the phase transition temperature of dry phosphatidylcholine, but not for lyoprotection of liposomes. Biophys J. 2006;90(8):2831-2842. PubMed, PubMed, CrossRef
  59. Knaupp M, Mishra KB, Nedbal L, Heyer AG. Evidence for a role of raffinose in stabilizing photosystem II during freeze-thaw cycles. Planta. 2011;234(3):477-486. PubMed, CrossRef
  60.  Liu Y, Li T, Zhang C, Zhang W, Deng N, Dirk LMA, Downie AB, Zhao T. Raffinose positively regulates maize drought tolerance by reducing leaf transpiration. Plant J. 2023;114(1):55-67. PubMed, CrossRef
  61. Vinson CC, Mota APZ, Porto BN, Oliveira TN, Sampaio I, Lacerda AL, Danchin EGJ, Guimaraes PM, Williams TCR, Brasileiro ACM. Characterization of raffinose metabolism genes uncovers a wild Arachis galactinol synthase conferring tolerance to abiotic stresses. Sci Rep. 2020;10(1):15258. PubMed, PubMed, CrossRef
  62. Szablińska-Piernik J, Lahuta LB. Polar Metabolites Profiling of Wheat Shoots (Triticum aestivum L.) under Repeated Short-Term Soil Drought and Rewatering. Int J Mol Sci. 2023;24(9):8429. PubMed, PubMed, CrossRef
  63. Xue GP, McIntyre CL, Glassop D, Shorter R. Use of expression analysis to dissect alterations in carbohydrate metabolism in wheat leaves during drought stress. Plant Mol Biol. 2008;67(3):197-214. PubMed, CrossRef
  64. Seki M, Umezawa T, Urano K, Shinozaki K. Regulatory metabolic networks in drought stress responses. Curr Opin Plant Biol. 2007;10(3):296-302. PubMed, CrossRef
  65. Bazargani MM, Hajirezaei MR, Salekdeh GH, Bushehri AAS, Falahati-Anbaran M, Moradi F, Naghavi MR, Ehdaie B. A view on the role of metabolites in enhanced stem reserves remobilization in wheat under drought during grain filling. Austr J Crop Sci. 2012;6(12):1613-1623.
  66. Bagherikia S, Pahlevani M, Yamchi A, Zaynalinezhad K, Mostafaie A. Transcript profiling of genes encoding fructan and sucrose metabolism in wheat under terminal drought stress. J Plant Growth Regul. 2019;38:148-163. CrossRef
  67. Faisal S, Mujtaba SM, Asma, Mahboob W. Polyethylene glycol mediated osmotic stress impacts on growth and biochemical aspects of wheat (Triticum aestivum L.). J Crop Sci Biotechnol. 2019;22:213-223. CrossRef
  68. Marcińska I, Czyczyło-Mysza I, Skrzypek E, Filek M, Grzesiak S, Grzesiak MT, Janowiak F, Hura T, Dziurka M, Dziurka K, Nowakowska A, Quarrie SA. Impact of osmotic stress on physiological and biochemical characteristics in drought-susceptible and drought-resistant wheat genotypes. Acta Physiol Plant. 2013;35(2):451-461. CrossRef
  69. Kaur K, Gupta AK, Kaur N. Effect of water deficit on carbohydrate status and enzymes of carbohydrate metabolism in seedlings of wheat cultivars. Indian J Biochem Biophys. 2007;44(4):223-230. PubMed
  70. Ghaffar A, Hussain N, Ajaj R, Shahin SM, Bano H, Javed M, Khalid A, Yasmin M, Shah KH, Zaheer M, Iqbal M, Zafar ZU, Athar HU. Photosynthetic activity and metabolic profiling of bread wheat cultivars contrasting in drought tolerance. Front Plant Sci. 2023;14:1123080. PubMed, PubMed, CrossRef
  71. Guo R, Shi L, Jiao Y, Li M, Zhong X, Gu F, Liu Q, Xia X, Li H. Metabolic responses to drought stress in the tissues of drought-tolerant and drought-sensitive wheat genotype seedlings. AoB Plants. 2018;10(2):ply016. PubMed, PubMed, CrossRef
  72. Kolupaev YuE, Yastreb TO, Salii AM, Kokorev AI, Ryabchun NI, Zmiievska OA, Shkliarevskyi MA. State of antioxidant and osmoprotective systems in etiolated winter wheat seedlings of different cultivars due to their drought tolerance. Zemdirbyste-Agriculture. 2022;109(4):313-322. CrossRef
  73. Kolupaev YuE, Ryabchun NI, Leonov OYu, Kokorev AI, Taraban DA, Shakhov IV, Shkliarevskyi MA, Yastreb TO. Functioning of the antioxidant and osmoprotective systems of Triticum aestivum cultivars growing under soil drought conditions. Botanica. 2024;30(3):102-116. CrossRef
  74.  Alvarez ME, Savouré A, Szabados L. Proline metabolism as regulatory hub. Trends Plant Sci. 2022;27(1):39-55. PubMed, CrossRef
  75. Szabados L, Savouré A. Proline: a multifunctional amino acid. Trends Plant Sci. 2010;15(2):89-97. PubMed, CrossRef
  76. Fichman Y, Gerdes SY, Kovács H, Szabados L, Zilberstein A, Csonka LN. Evolution of proline biosynthesis: enzymology, bioinformatics, genetics, and transcriptional regulation. Biol Rev Camb Philos Soc. 2015;90(4):1065-1099. PubMed, CrossRef
  77. Ghosh UK, Islam MN, Siddiqui MN, Cao X, Khan MAR. Proline, a multifaceted signalling molecule in plant responses to abiotic stress: understanding the physiological mechanisms. Plant Biol (Stuttg). 2022;24(2):227-239. PubMed, CrossRef
  78. Funck D, Stadelhofer B, Koch W. Ornithine-delta-aminotransferase is essential for arginine catabolism but not for proline biosynthesis. BMC Plant Biol. 2008;8:40. PubMed, PubMed, CrossRef
  79. Meena M, Divyanshu K, Kumar S, Swapnil P, Zehra A, Shukla V, Yadav M, Upadhyay RS. Regulation of L-proline biosynthesis, signal transduction, transport, accumulation and its vital role in plants during variable environmental conditions. Heliyon. 2019;5(12):e02952. PubMed, PubMed, CrossRef
  80. El Moukhtari A, Cabassa-Hourton C, Farissi M, Savouré A. How does proline treatment promote salt stress tolerance during crop plant development? Front Plant Sci. 2020;11:1127. PubMed, PubMed, CrossRef
  81. Forlani G, Trovato M, Funck D, Signorelli S. Regulation of proline accumulation and its molecular and physiological functions in stress defence. In: Hossain MA, Kumar V, Burritt DJ, Fujita M, Mäkelä PSA. (eds.). Osmoprotectant-mediated abiotic stress tolerance in plants: recent advances and future perspectives. Switzerland AG Cham, Springer Nature, 2019. P. 73-97. CrossRef
  82. Liang X, Zhang L, Natarajan SK, Becker DF. Proline mechanisms of stress survival. Antioxid Redox Signal. 2013;19(9):998-1011. PubMed, PubMed, CrossRef
  83. Kaur G, Asthir B. Proline: a key player in plant abiotic stress tolerance. Biol Plant. 2015;59:609-619. CrossRef
  84. Natarajan SK, Zhu W, Liang X, Zhang L, Demers AJ, Zimmerman MC, Simpson MA, Becker DF. Proline dehydrogenase is essential for proline protection against hydrogen peroxide-induced cell death. Free Radic Biol Med. 2012;53(5):1181-1191. PubMed, PubMed, CrossRef
  85. Signorelli S, Coitiño EL, Borsani O, Monza J. Molecular mechanisms for the reaction between (˙)OH radicals and proline: insights on the role as reactive oxygen species scavenger in plant stress. J Phys Chem B. 2014;118(1):37-47. PubMed, CrossRef
  86. Signorelli S, Dans PD, Coitiño EL, Borsani O, Monza J. Connecting proline and γ-aminobutyric acid in stressed plants through non-enzymatic reactions. PLoS One. 2015;10(3):e0115349. PubMed, PubMed, CrossRef
  87. Mansour MMF, Salama KHA. Proline and abiotic stresses: Responses and adaptation. In: Hasanuzzaman M. (ed.). Plant Ecophysiology and Adaptation under Climate Change: Mechanisms and Perspectives II. Springer, Singapore, 2020. P. 357-397. CrossRef
  88. de Carvalho K, de Campos MK, Domingues DS, Pereira LF, Vieira LG. The accumulation of endogenous proline induces changes in gene expression of several antioxidant enzymes in leaves of transgenic Swingle citrumelo. Mol Biol Rep. 2013;40(4):3269-3279. PubMed, CrossRef
  89. Dubrovna OV, Stasik OO, Priadkina GO, Zborivska OV, Sokolovska-Sergiienko OG. Resistance of genetically modified wheat plants, containing a doublestranded RNA suppressor of the proline dehydrogenase gene, to soil moisture deficiency. Agricult Sci Pract. 2020;7(2):24-34. CrossRef
  90. Dubrovna OV, Priadkina GO, Mykhalska SI, Komisarenko AG. Drought-tolerance of transgenic winter wheat with partial suppression of the proline dehydrogenase gene. Regul Mech Biosyst. 2022;13(4):385-392. CrossRef
  91. Bekka S, Abrous-Belbachir O, Djebbar R. Effects of exogenous proline on the physiological characteristics of Triticum aestivum L. and Lens culinaris Medik. under drought stress. Acta Agricult Slovenica. 2018;111(2):477-491. CrossRef
  92. Kolupaev YE, Yastreb TO, Ryabchun NI, Kuzmyshyna NV, Shkliarevskyi MA, Barabolia O, Pysarenko VM. Response of Triticum aestivum seedlings of different ecological and geographical origin to heat and drought: relationship with resistance to oxidative stress and osmolyte accumulation. Agricult Forest. 2023;69(2):83-99. CrossRef
  93. Yastreb TO, Kokorev AI, Makaova BE, Ryabchun NI, Sakhno TV, Dmitriev AP, Kolupaev YuE. Response of the antioxidant system of wheat seedlings with different genotypes to exogenous prooxidants: the relationship with resistance to abiotic stressors. Ukr Biochem J. 2023;95(6):81-96. CrossRef
  94. Vayner AO, Kolupaev YuE, Yastreb TO. Participation of hydrogen peroxide in induction of proline accumulation in millet plants under action of NaCl. Bull Kharkiv Natl Agrar Univ. Ser Biology. 2013;2(29): 32-38.
  95. Ben Rejeb K, Lefebvre-De Vos D, Le Disquet I, Leprince AS, Bordenave M, Maldiney R, Jdey A, Abdelly C, Savouré A. Hydrogen peroxide produced by NADPH oxidases increases proline accumulation during salt or mannitol stress in Arabidopsis thaliana. New Phytol. 2015;208(4):1138-1148. PubMed, CrossRef
  96. Signorelli S, Tarkowski ŁP, O’leary B, Tabares-da Rosa S, Borsani O, Monza J. GABA and Proline Metabolism in Response to Stress. In: Gupta DK, Corpas FJ. (eds.). Hormones and Plant Response, vol. 2. Springer International Publishing, 2021. P. 291-314. CrossRef
  97. Rajendrakumar CS, Reddy BV, Reddy AR. Proline-protein interactions: protection of structural and functional integrity of M4 lactate dehydrogenase. Biochem Biophys Res Commun. 1994;201(2):957-963. PubMed, CrossRef
  98. Sharma P, Dubey RS. Modulation of nitrate reductase activity in rice seedlings under aluminium toxicity and water stress: role of osmolytes as enzyme protectant. J Plant Physiol. 2005;162(8):854-864. PubMed, CrossRef
  99. Mishra S, Dubey RS. Inhibition of ribonuclease and protease activities in arsenic exposed rice seedlings: role of proline as enzyme protectant. J Plant Physiol. 2006;163(9):927-936. PubMed, CrossRef
  100. Valifard M, Moradshahi A, Kholdebarin B. Biochemical and physiological responses of two wheat (Triticum aestivum L.) cultivars to drought stress applied at seedling stage. J Agr Sci Tech. 2012;14:1567-1578.
  101.  Selim DAH, Nassar RMA, Boghdady MS, Bonfill M. Physiological and anatomical studies of two wheat cultivars irrigated with magnetic water under drought stress conditions. Plant Physiol Biochem. 2019;135:480-488. PubMed, CrossRef
  102. Wang J, Zhang X, Han Z, Feng H, Wang Y, Kang J, Han X, Wang L, Wang C, Li H, Ma G. Analysis of physiological indicators associated with drought tolerance in wheat under drought and re-watering conditions. Antioxidants (Basel). 2022;11(11):2266. PubMed, PubMed, CrossRef
  103. Romanenko KO, Babenko LM, Smirnov OE, Kosakivska IV. Impact of moderate soil drought on the dynamics and distribution of low molecular weight protectors in Triticum aestivum and Triticum spelta. J Crop Health. 2025;77:32. CrossRef
  104. Muhammad H, Chachar NA, Chachar Q, Sheikh Muhammad M, Chachar S, Chachar Z. Physiological characterization of six wheat genotypes for drought tolerance. Int J Res – Granthaalayah. 2016;4(2):184-196. CrossRef
  105. Hassan N, Ebeed H, Aljaarany A. Exogenous application of spermine and putrescine mitigate adversities of drought stress in wheat by protecting membranes and chloroplast ultra-structure. Physiol Mol Biol Plants. 2020;26(2):233-245. PubMed, PubMed, CrossRef
  106. Sharma V, Kumar A, Chaudhary A, Mishra A, Rawat S, B. BY, Shami V, Kaushik P. Response of wheat genotypes to drought stress stimulated by PEG. Stresses. 2022;2(1):26-51. CrossRef
  107. Kang Z, Babar MA, Khan N, Guo J, Khan J, Islam S, Shrestha S, Shahi D. Comparative metabolomic profiling in the roots and leaves in contrasting genotypes reveals complex mechanisms involved in post-anthesis drought tolerance in wheat. PLoS One. 2019;14(3):e0213502. PubMed, PubMed, CrossRef
  108. Saeedipour S, Moradi F. Stress-induced changes in the free amino acid composition of two wheat cultivars with difference in drought resistance. Afr J Biotechnol. 2012;11(40):9559-9565. CrossRef
  109. Wang X, Mao Z, Zhang J, Hemat M, Huang M, Cai J, Zhou Q, Dai T, Jiang, D. Osmolyte accumulation plays important roles in the drought priming induced tolerance to post-anthesis drought stress in winter wheat (Triticum aestivum L.). Environ Exp Bot. 2019;166:103804. CrossRef
  110. Griffiths CA, Reynolds MP, Paul MJ. Combining yield potential and drought resilience in a spring wheat diversity panel. Food Energy Secur. 2020;9(4):e241. PubMed, PubMed, CrossRef
  111. Tuteja N, Sopory SK. Chemical signaling under abiotic stress environment in plants. Plant Signal Behav. 2008;3(8):525-536. PubMed, PubMed, CrossRef
  112.  Mittler R, Vanderauwera S, Suzuki N, Miller G, Tognetti VB, Vandepoele K, Gollery M, Shulaev V, Van Breusegem F. ROS signaling: the new wave? Trends Plant Sci. 2011;16(6):300-309. PubMed, CrossRef
  113. Singh P, Basu S, Kumar G. Polyamines metabolism: A way ahead for abiotic stress tolerance in crop plants. In: Wani SH. (ed.). Biochemical, Physiological and Molecular Avenues for Combating Abiotic Stress Tolerance in Plants. Academic Press, 2018. P. 39-55. CrossRef
  114.  Pál M, Szalai G, Janda T. Speculation: Polyamines are important in abiotic stress signaling. Plant Sci. 2015;237:16-23. PubMed, PubMed, CrossRef
  115. Liu Y, Liang H, Lv X, Liu D, Wen X, Liao Y. Effect of polyamines on the grain filling of wheat under drought stress. Plant Physiol Biochem. 2016;100:113-129. PubMed, CrossRef
  116.  Chen D, Shao Q, Yin L, Younis A, Zheng B. Polyamine function in plants: metabolism, regulation on development, and roles in abiotic stress responses. Front Plant Sci. 2019;9:1945. PubMed, PubMed, CrossRef
  117. Kolupaev YuE, Kokorev AI, Dmitriev AP. Polyamines: involvement in cellular signaling and plant adaptation to the effect of abiotic stressors. Cytol Genet. 2022;56(2):148-163. CrossRef
  118. Minocha R, Majumdar R, Minocha SC. Polyamines and abiotic stress in plants: a complex relationship. Front Plant Sci. 2014;5:175. PubMed, PubMed, CrossRef
  119. Wen X, Moriguchi T. Role of polyamines in stress response in horticultural crops. In: Kanayama Y, Kochetov A. (eds.). Abiotic Stress Biology in Horticultural Plants. Springer, Tokyo, 2015. P. 35-45. CrossRef
  120. Abbasi NA, Ali I, Hafiz IA, Khan AS. Application of polyamines in horticulture: A review. Int J Biosci. 2017;10(5):319-342. CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.