Tag Archives: heart

Oxidative stress in the heart of rats exposed to acute intermittent hypobaric hypoxia

S. Dewi1*, M. Sadikin1, W. Mulyawan2

1Department of Biochemistry and Molecular Biology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia;
2Department of Aerophysiology, Lakespra Saryanto, Air Force Indonesian National Army, Jakarta, Indonesia;
*e-mail: syarifah.dewi@ui.ac.id

Received: 01 October 2020; Accepted: 17 May 2021

It is known that the altitude area causes hypoxic conditions due to the low oxygen partial pressure. This study was conducted to estimate oxidative stress indices in the heart tissue after Wister rats exposure to the acute intermittent hypobaric hypoxia. Hypobaric hypoxia exposure was simulated by keeping the rats in a hypobaric chamber for 1 min at 35,000 feet altitude. After that the altitude was gradually reduced to 30,000 and 25,000 feet and maitained for 5 min. 25 male Wistar rats were divided into control group and four treatment groups (I-IV), consisting of rats exposed 1, 2, 3 and 4 times to hypobaric hypoxia with a frequency once a week. The animals were removed from the experiment at the  height of 18,000 feet and the heart tissue was obtained. The carbonyl groups and  MDA levels and superoxide dismutase and  catalase activity were exami­ned in the supernatant of the heart tissue homogenate. In the samples of group I, the decrease  in catalase activity with a simultaneous notable increase in carbonyl groups level was observed compared to control. In the samples of groups III and IV, the carbonyl level normalized and the activity of  both antioxidant enzymes increased significantly. It was concluded that the increase of antioxidant enzymes activity can contribute to cardiac tissue adaptive response to acute hypobaric hypoxia exposure.

Antitoxical effects of N-stearoylethanolamine in suspension and in nanocomposite complex in the organs of mice with the Lewis carcinoma under doxorubicin administration

I. A. Goudz1, N. M. Gula1, T. O. Khmel1, T. M. Goridko1, Y. M. Bashta1,
R. R. Panchuk2, R. S. Stoika2, A. A. Ryabtseva3, O. S. Zaichenko3

1Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv;
e-mail: ngula@biochem.kiev.ua;
2Institute of Cell Biology, National Academy of Sciences of Ukraine, Lviv;
3National University Lviv Politekhnika, Ukraine

The antioxidant effects of N-stearoylethanolamine (NSE) in the nanocomplex composition and in suspension are shown on the model of intoxication by doxorubicin in conditions of development of the Lewis carcinoma in the heart, kidneys and liver tissue and in the blood plasma of female mice. The NSE suspension reduces the level of urea in the blood plasma of mice with the Lewis carcinoma, which growth was revealed as a result of introduction of doxorubicin. Under introduction of nanocomplex the amount of urea remains at the level of that in the intact mice. In the blood plasma of mice with the Lewis carcinoma the NSE suspension and nanocomplex reduce activity of aspartate aminotransferase, the basic marker of necrosis of the heart tissue, growth of which was caused by the tumour development. Doxorubicinum increases activity of alanine aminotransferase, the marker of the liver lesion; introduction of NSE in the nanocomplex composition prevents the growth of the enzyme activity. N-stearoylethanolamine, both in the nanocomplex and in suspension, modulates activity of enzymes of antioxidantive protection of the heart, kidney and liver tissue of mice with the Lewis carcinoma.

Biochemical changes in rats under the influence of cesium chloride

N. M. Melnikova, O. V. Yermishev

National University of Life and Environmental Sciences of Ukraine, Kyiv;
e-mail: iermishev@i.ua

Cesium is lately accumulated actively in the environment, but its influence on human and ani­mal organism is the least studied among heavy metals. It is shown that the action of cesium chloride in rats caused significant changes in blood chemistry, which are characterized by a decrease of total protein content, pH, an increase in the level of urea, creatinine, glucose and total hemoglobin. The results showed that potassium content in all the studied organs and tissues of poisoned rats decreases under the action of cesium chloride. Histological examination of the heart tissue in rats poisoned with cesium chloride indicates the onset of pathology of cardiovascular system. It was found out that use of the drug “Asparkam” reduces the negative effect of cesium chloride on the body of rats.

Organ-specific antitoxic effects of N-stearoilethanolamine male mice with lewis carcinoma under indoxorubicin intoxication

E. A. Goudz, N. M. Gulа, T. N. Goridko, Y. N. Bashta, A. I. Voyeikov

Palladin Institute of Biochemistry,
National Academy of Sciences of Ukraine, Kyiv;
e-mail: ngula@biochem.kiev.ua

With the introduction of doxorubicin into mice with Lewis carcinoma in the heart and liver tissues and kidney the organ-antitoxic effects of N-stearoilethanolamine (NSE) were found, which depended on its concentration. Administration of doxorubicin to male mice leads to an increase in the level of urea and creatinine, as well as activation of ALT in blood plasma. Introduction of NSE resulted in normalization of these parameters to the level of intact animals. In the heart tissue  doxorubicin has multi-directional effects on the activity of antioxidant enzymes, in particular it decreases the activity of catalase and superoxide dismutase activity increases. Introduction of NSE normalizes these two indicators. It was found that tumor growth leads to an increase in the activity of glutathione peroxidase and superoxide dismutase. Introduction of NSE normalizes activity of these enzymes. Doxorubicin causes an increase in catalase activity in the kidney of mice with tumour, NSE prevented the increase in the activity of the above enzyme. The cancer process leads to increased levels of catalase activity in the liver of tumour-bearing mice, the introduction of NSE decreases the enzyme activity.

Antioxidant defense system state in blood plasma and heart muscle of rats under the influence of histamine and sodium hypoclorite

O. I. Bishko, N. P. Harasym, D. I. Sanahurs’kyj

Ivan Franko National University of Lviv, Ukraine;
e-mail: oliabishko@gmail.com

There is a wide spectrum of antihistamine drugs in the pharmaceutical market, however all these chemical preparations cause side effects. Therefore, new alternative ways for histamine detoxication are to be found. For this aim in our experiment sodium hypochlorite was used because its solution possesses strong oxidizing properties. The influence of histamine and sodium hypochlorite on the antioxidant defence system state of blood plasma and cardiac muscle in rats has been researched. It was shown, that the investigated factors result in the disruption of the antioxidant system. It was found that histamine injection in concentration of 1 and 8 μg/kg in plasma leads to the increase of superoxi­de dismutase activity during all the experiment. When studying enzymes, that catalyze hydroperoxides and Н2О2 decomposition it was shown that under the influence of histamine in a dose 1 μg/kg, the glutathione peroxidase activity increased on the 1st day of the experiment. However, on the 7th day of the experiment the increase of both glutathione peroxidase and catalase activity was fixed. The deviation in superoxide dismutase function in rats plasma under the action of sodium hypochlorite has been established. The activity of enzymes that decompose Н2О2 and hydroperoxides were inhibi­ted. Under the influence of histamine in the heart tissues we have stated the disturbance of superoxide dismutase work and increase of catalase activity and decrease of glutathione peroxidase activity. The influence of sodium hypochlorite on the myocardium of intact animals as well as joint influence of sodium hypochlorite and histamine result in the increase of superoxide dismutase and catalase activity and lead to the conside­rable decline of activity of glutathione peroxidase.