Ukr.Biochem.J. 2020; Volume 92, Issue 5, Sep-Oct, pp. 111-119

doi: https://doi.org/10.15407/ubj92.05.111

Changes in gene expression of lactate carriers (MCT1 and CD147) in cardiac muscle of diabetic male rats: the effect of dichloroacetate and endurance training

H. Rezaeinasab1*, A. Habibi1, M. Nikbakht1, M. Rashno2,3, S. Shakerian1

1Department of Exercise Physiology, Faculty of Sport Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran;
2Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran;
3Department of Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
e-mail: hamed.rezaei2020@gmail.com

Received: 23 March 2020; Accepted: 25 June 2020

Lactate accumulation can activate the pathways of mitochondrial biogenesis in the heart muscle. The purpose of this study was to investigate the effects of Pyruvate Dehydrogenase Kinase 4 (PDK4) inhibition and endurance training on the gene expression of lactate carriers (MCT1 and CD147) in the cardiac muscle of STZ-diabetic rats. In this experimental study, 64 male Wistar rats were selected and randomly divided into eight groups after induction of diabetes with streptozotocin (STZ). The endurance training protocol was performed on a treadmill for 6 weeks. Intraperitoneal injection of DCA of 50 mg/ kg body weight was used for the inhibition of PDK4 in the myocardium. Gene expression were measured using real-time PCR. The two-way ANOVA test was used to analyze the data. The results of the study showed that after endurance training, the expression of MCT1, PDK4, and CD147 genes increased significantly in line with each other (P < 0.05), and by inhibition of PDK4 in the heart muscle, the expression of MCT1 and CD147 genes in the endurance training group + diabetes + DCA and in the diabetes group + DCA decreased significantly (P < 0.05). According to the results of this study, it can be concluded that the repeated accumulation of lactate caused by exercise training in diabetic patients decrease through mitochondrial adaptation by DCA injection and subsequently oxidative stress can be reduced in cardiac tissue of diabetic patients and heart efficacy can be increased.

Keywords: , , , ,


References:

  1. Kearney MT. Chronic heart failure and type 2 diabetes mellitus: The last battle? Diab Vasc Dis Res. 2015;12(4):226-227. PubMed, CrossRef
  2. Liang Q, Satoru Kobayashi S. Mitochondrial quality control in the diabetic heart. J Mol Cell Cardiol. 2016;95:57-69. PubMed, PubMedCentral, CrossRef
  3. Cubbon RM, Woolston A, Adams B, Gale CP, Gilthorpe MS, Baxter PD, Kearney LC, Mercer B, Rajwani A, Batin PD, Kahn M, Sapsford RJ, Witte KK, Kearney MT. Prospective development and validation of a model to predict heart failure hospitalisation. Heart. 2014;100(12):923-929. PubMed, PubMedCentral, CrossRef
  4. Keteyian SJ, Brawner CA, Savage PD, Ehrman JK, Schairer J, Divine G, Aldred H, Ophaug K, Ades  PA. Peak aerobic capacity predicts prognosis in patients with coronary heart disease. Am Heart J. 2008;156(2):292-300. PubMed, CrossRef
  5. Mihl C, Dassen WRM, Kuipers H. Cardiac remodelling: concentric versus eccentric hypertrophy in strength and endurance athletes. Neth Heart J. 2008;16(4):129-133. PubMed, PubMedCentral, CrossRef
  6. Brooks GA. Cell-cell and intracellular lactate shuttles. J Physiol. 2009;587(Pt 23):5591-5600. PubMed, PubMedCentral, CrossRef
  7. Juel C. Current aspects of lactate exchange: lactate/H+ transport in human skeletal muscle. Eur J Appl Physiol. 2001;86(1):12-16. PubMed, CrossRef
  8. Bishop D, Edge J, Thomas C, Mercier  J. Effects of high-intensity training on muscle lactate transporters and postexercise recovery of muscle lactate and hydrogen ions in women. Am J Physiol Regul Integr Comp Physiol. 2008;295(6):R1991-R1998. PubMed, CrossRef
  9. Bonen A. The expression of lactate transporters (MCT1 and MCT4) in heart and muscle. Eur J Appl Physiol. 2001;86(1):6-11. PubMed, CrossRef
  10. Dubouchaud H, Butterfield GE, Wolfel EE, Bergman BC, Brooks GA. Endurance training, expression, and physiology of LDH, MCT1, and MCT4 in human skeletal muscle. Am J Physiol Endocrinol Metab. 2000;278(4):E571-E579. PubMed, CrossRef
  11. Bonen A, Tonouchi M, Miskovic D, Heddle C, Heikkila JJ, Halestrap AP. Isoform-specific regulation of the lactate transporters MCT1 and MCT4 by contractile activity. Am J Physiol Endocrinol Metab. 2000;279(5):E1131-E1138. PubMedCrossRef
  12. De Heredia FP, Wood IS, Trayhurn P. Hypoxia stimulates lactate release and modulates monocarboxylate transporter (MCT1, MCT2, and MCT4) expression in human adipocytes. Pflugers Arch. 2010;459(3):509-518. PubMed, CrossRef
  13. Kirk P, Wilson MC, Heddle C, Brown MH, Barclay AN, Halestrap AP. CD147 is tightly associated with lactate transporters MCT1 and MCT4 and facilitates their cell surface expression. EMBO J. 2000;19(15):3896-3904. PubMed, PubMedCentral, CrossRef
  14. Benton CR, Yoshida Y, Lally J, Han XX, Hatta H, Bonen A. PGC-1alpha increases skeletal muscle lactate uptake by increasing the expression of MCT1 but not MCT2 or MCT4. Physiol Genomics. 2008;35(1):45-54. PubMed, CrossRef
  15. Taegtmeyer H, Young ME, Lopaschu GD, Abel ED, Brunengraber H, Darley-Usmar V, Des Rosiers C, Gerszten R, Glatz JF, Griffin JL, Gropler RJ, Holzhuetter HG, Kizer JR, Lewandowski ED, Malloy CR, Neubauer S,  Peterson LR, Portman MA, Recchia FA, Van Eyk JE, Wang TJ. Assessing Cardiac Metabolism: A Scientific Statement From the American Heart Association. Circ Res. 2016;118(10):1659-1701. PubMed, PubMedCentral, CrossRef
  16. Boudina S, Abel ED.Diabetic cardiomyopathy revisited. Circulation. 2007;115(25):3213-3223. PubMed, CrossRef
  17. Chong CR, Clarke K, Levelt E. Metabolic remodeling in diabetic cardiomyopathy. Cardiovasc Res. 2017;113(4):422-430.
    PubMed, PubMedCentral, CrossRef
  18. Small L, Brandon AE, Quek LE, Krycer JR, James DE, Turner N, Cooney GJ. Acute activation of pyruvate dehydrogenase increases glucose oxidation in muscle without changing glucose uptake. Am J Physiol Endocrinol Metab. 2018;315(2):E258-E266. PubMed, CrossRef
  19. James MO, Jahn SC, Zhong G, Smeltz MG, Hu Z, Stacpoole PW. Therapeutic applications of dichloroacetate and the role of glutathione transferase zeta-1. Pharmacol Ther. 2017;170:166-180. PubMed, PubMedCentral, CrossRef
  20. Tobina T, Yoshiok K, Hirata A, Mori S, Kiyonaga A, Tanaka H. Peroxisomal proliferator-activated receptor gamma co-activator-1 alpha gene expression increases above the lactate threshold in human skeletal muscle. J Sports Med Phys Fitness. 2011;51(4):683-688.  PubMed
  21. Sun XQ, Zhang R, Zhang HD, Yuan P, Wang XJ, Zhao QH, Wang L, Jiang R, Bogaard HJ, Jing ZC. Reversal of right ventricular remodeling by dichloroacetate is related to inhibition of mitochondria-dependent apoptosis. Hypertens Res. 2016;39(5):302-311. PubMed, CrossRef
  22. Gajdosík A, Gajdosíková A, Stefek M, Navarová J, Hozová R. Streptozotocin-induced experimental diabetes in male Wistar rats. Gen Physiol Biophys. 1999;18 Spec No:54-62. PubMed
  23. Thomas C, Perrey S, Lambert K, Hugon G, Mornet D, Mercier J. Monocarboxylate transporters, blood lactate removal after supramaximal exercise, and fatigue indexes in humans. J Appl Physiol. 2005;98(3):804-809. PubMed, PubMedCentral, CrossRef
  24. Ferriero R, Iannuzzi C, Manco G, Brunetti-Pierri N. Differential inhibition of PDKs by phenylbutyrate and enhancement of pyruvate dehydrogenase complex activity by combination with dichloroacetate. J Inherit Metab Dis. 2015;38(5):895-904. PubMed, PubMedCentral, CrossRef
  25. Sun L, Shen W, Liu Z, Guan S, Liu J, Ding S. Endurance exercise causes mitochondrial and oxidative stress in rat liver: effects of a combination of mitochondrial targeting nutrients. Life Sci. 2010;86(1-2):39-44. PubMedCrossRef
  26. Cook GA, Lavrentyev EN, Pham K, Park EA. Streptozotocin diabetes increases mRNA expression of ketogenic enzymes in the rat heart. Biochim Biophys Acta Gen Subj. 2017;1861(2):307-312. PubMed, PubMedCentral, CrossRef
  27. Constantin-Teodosiu D. Regulation of muscle pyruvate dehydrogenase complex in insulin resistance: effects of exercise and dichloroacetate. Diabetes Metab J. 2013;37(5):301-314. PubMed, PubMedCentral, CrossRef
  28. Mallinson JE, Constantin-Teodosiu D, Glaves PD, Marti EA, Davies WJ, Westwood FR, Sidaway JE, Greenhaff PL. Pharmacological activation of the pyruvate dehydrogenase complex reduces statin-mediated upregulation of FOXO gene targets and protects against statin myopathy in rodents. J Physiol. 2012;590(24):6389-6402. PubMed, PubMedCentral, CrossRef
  29. Hoshino D, Tamura Y, Masuda H, Matsunaga Y, Hatta H. Effects of decreased lactate accumulation after dichloroacetate administration on exercise training-induced mitochondrial adaptations in mouse skeletal muscle. Physiol Rep. 2015;3(9):e12555. PubMed, PubMedCentral, CrossRef
  30. Lloyd S, Brocks C, Chatham JC. Differential modulation of glucose, lactate, and pyruvate oxidation by insulin and dichloroacetate in the rat heart. Am J Physiol Heart Circ Physiol. 2003;285(1):H163-H172. PubMed, CrossRef
  31. Stanley WC, Recchia FA, Lopaschuk GD. Myocardial substrate metabolism in the normal and failing heart. Physiol Rev. 2005;85(3):1093-1129. PubMed, CrossRef
  32. Lopaschuk GD, Usshe JR, Folmes CDL, Jaswal JS, Stanley WC. Myocardial fatty acid metabolism in health and disease. Physiol Rev. 2010;90(1):207-258. PubMed, CrossRef
  33. Fillmore N, Mori J, Lopaschuk GD. Mitochondrial fatty acid oxidation alterations in heart failure, ischaemic heart disease and diabetic cardiomyopathy. Br J Pharmacol. 2014;171(8):2080-2090. PubMed, PubMedCentral, CrossRef
  34. Levelt E, Mahmod M, Piechnik SK, Ariga R, Francis JM, Rodgers CT, Clarke WT, Sabharwal N, Schneide JE, Karamitsos TD, Clarke K, Rider OJ, Neubauer S. Relationship between left ventricular structural and metabolic remodeling in type 2 diabetes. Diabetes. 2016;65(1):44-52. PubMed, PubMedCentral, CrossRef
  35. Mizuno Y, Harada E, Nakagawa H, Morikawa Y, Shono M, Kugimiya F, Yoshimura M, Yasue H. The diabetic heart utilizes ketone bodies as an energy source. Metabolism. 2017;77:65-72. PubMed, CrossRef
  36. Bloomgarden ZT. Concepts of insulin resistance. Metab Syndr Relat Disord. 2005;3(4):284-293. PubMed, CrossRef
  37. Petersen KF, Dufour S, Befroy D, Lehrke M, Hendler RE, Shulman GI. Reversal of nonalcoholic hepatic steatosis, hepatic insulin resistance, and hyperglycemia by moderate weight reduction in patients with type 2 diabetes. Diabetes. 2005;54(3):603-608. PubMed, PubMedCentral, CrossRef
  38. Enoki T, Yoshida Y, Hatta H, Bonen A. Exercise training alleviates MCT1 and MCT4 reductions in heart and skeletal muscles of STZ-induced diabetic rats. J Appl Physiol. 2003;94(6):2433-2438. PubMed, CrossRef
  39. Mondon CE, Jones IR, Azhar S, Hollenbeck CB, Reaven GM. Lactate production and pyruvate dehydrogenase activity in fat and skeletal muscle from diabetic rats. Diabetes. 1992;41(12):1547-1554.  PubMed, CrossRef
  40. Becker-Zimmermann K, Berger M, Berchtold P, Gries FA, Herberg L, Schwenen M. Treadmill training improves intravenous glucose tolerance and insulin sensitivity in fatty Zucker rats. Diabetologia. 1982;22(6):468-474. PubMed, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.